Devjani Sinha

Sensor Based Efficient Location Tracking

Sensor Based Efficient Multi-Floor Location Tracking
MASTER PROJECT REPORT

Advisor: C. Edward Chow
Committee Member: Semwal Sudhanshu
Committee Member: Xiaobo Joe Zhou
By

Devjani Sinha

Contents
1. Introduction

1.1 What are Wireless Sensor Networks? ..……………………………………………….4

1.2 Network Architecture………………………………………………………………….5

1.3 Platforms………………………………………………………………………………7
1.4 Location Tracking……………………………………………………………………..8
2. Related Research

2.1 Mica2 Berkeley Mote...……………………………………………………………….8

2.2 TOSSIM……………………………………………………………………………….8
2.3 TinyViz………..………………………………………………………………………9
2.3.1 TinyViz Plugins……………………………………………………………..…10
 2.3.2 Radio model ……..…………………………………………………………….10
 2.3.3 Obstructed Radio Model Plugin..…………………….……………….…….....11

2.4 Indoor 3D Location Tracking……………………………………………………......13
2.4.1 Concept……………………………………………………………………...…13
 2.4.2 Aggregation Algorithm….……………………………………………………..13

3. Development

3.1 Calculating Signal Strength (SS).……………………………………………………14
3.2 Multi-floor setup of the Stationary Sensor Nodes……………...…………………... 15
3.3 Location sensing of the Actual Mobile mote or First Responder……………………15
3.3.1 Single floor Location Tracking…………………………………………...……15
 3.3.2 Multiple floor Location Tracking……………………………………………...17
4. Performance……………………………………………………………………….17
4.1 Effect of Scaling Factors…………………………………………………....……18
 4.2 Effect of Varying Z value for responder………………………….……………...19
 4.3 Effect of Top4 vs. Top3 Algorithm……………………………………………...19
5. Conclusion…………………………………………………………………………20
6. References………………………………………………………………20
7. Appendix

7.1 Installation Guide…………………………………...…………………………...21
 7.2 Simulation Data…………………………………………….................................23
Abstract
In this project, we developed a simulation tool based on TOSSIM from TinyOS for evaluating the effectiveness sensor-based location tracking algorithm similar to the Spot-on algorithm. We analyzed the tracking error and convergence of the algorithm, examine the impact of scaling factor, heights, and the number of initial sensor selection set on the performance of the algorithm. A TinyViz GUI was extended to display the locations of tracking results.
ACKNOWLEDGEMENT
I’m very thankful to Dr. Edward Chow for giving me an excellent opportunity to work on this project. Through this project, I got useful exposure to the world of Wireless Sensor Networks. I thank him for the support and for the feedback that he gave me all through the semester in capacity of an advisor. The guidance he provided was of great help.

1. Introduction
1.1 What are Wireless Sensor Networks?
Wireless sensor networks are emerging as both an important new tier in the IT ecosystem and a rich domain of active research involving hardware and system design, networking, distributed algorithms, programming models, data management, security, and social factors. They are beginning to realize the vision of an embedded Internet, in which networks of interconnected computing devices deeply, embedded into the physical environment transform whole fields of science, engineering, and manufacturing by providing detailed instrumentation of many points over large spaces, both natural and artificial [1].

Sensor networks provide a new kind of instrument-call it a macro scope- that enables us to observe and interact with physical phenomena in real time at a fidelity that was previously unobtainable. Such pervasive instrumentation will be of great value in a range of applications, including understanding ecosystem dynamics, setting land-use policy, protecting property, efficiently operating and managing machinery and vehicles, establishing perimeter and building security, protecting packages and containers, monitoring supply chain management, and helping deliver health care. Sensor networks readily extend to monitoring interactions among many objects within these domains, ensuring asset management, ubiquitous computing environments, and emergency response. Moreover, they help feed information into autonomous distributed control actions in, say, building temperature control and precision agriculture systems.

To fully realize the vision of the embedded Internet, the related devices must be small, unobtrusive, and expendable, and the network of potentially thousands of nodes must be cost-effective to develop, deploy, program, utilize, and maintain. Thus, sensor networks present significant systems challenges involving the use of large numbers of resource constrained nodes operating essentially unattended and exposed to the elements and to the potential for malicious attack for years at a time while dealing with the noise, uncertainty, and asynchrony of the real world. They need to be largely self-organizing, self-regulating, and self-repairing, programmable in place, and easily utilized as an ensemble.

Over the past few years, various platforms, including the Berkeley wireless Mica mote, have been developed to allow researchers to address these challenges in concrete, not just conceptual, terms. The underlying hardware technology for wireless sensor networks, consisting of perhaps thousands of integrated devices, with built-in processing, storage, and sensors with RF transceiver, energy storage, and antenna, is evolving quickly and gaining a signature style of design. That design involves much energy constrained, resource-limited devices operating in concert as a result of application requirements demanding long-term operation, up-close monitoring and constraints on size and available power. This new class of computer system and the range of design points it comprises, including specks of a few square millimeters of silicon, commodity microcontroller-based devices about the size of a coin, and more-powerful microprocessor-based embedded nodes. They also represent a road map of future developments, including deep integration and specialized accelerators to reduce power, extrapolating from several current devices, including the Berkeley motes, the Intel iMote, the Stargate Xscale-based server, and tiny integrated devices, along with such technology trends as improved radios and emerging standards [1].
1.2 Network Architecture
Several real-world deployments of habitat monitoring applications in the US have guided our development of flexible, multilevel network architecture. Figure 1 shows the main components of a typical habitat-monitoring application [2].

[image: image1.emf]

 On-site data center

[image: image15.emf]1.03

2.12

25%

2.29

12.43

20%

0

2

4

6

8

10

12

14

Tracking Err Avg

(ft)

Tracking Err Var

(ft)

% Unconverged

Single Flr, Z Fixed,

Top 4, SF=1

Single Flr, Z Fixed,

Top 3, SF=1

2.61

12.80

40%

4.63

35.84

0%

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

Tracking Err

Avg (ft)

Tracking Err Var

(ft)

% Unconverged

Multi Flr, Z Vary,

Top 4, SF=1

Multi Flr, Z Vary,

Top 3, SF=1

Client Data Browsing In-Network data caching

and Processing

 Figure 1. A typical habitat-monitoring application

The samples originate at the sensor nodes, which typically involve heterogeneous sensing capability, processing power, and storage.
They are typically deployed in dense patches, where each patch corresponds to a particular slice of the habitat of interest; individual patches are often widely separated. The data from the various patches flows through the transit network to an on-site data center. In addition to storing the data from the sensor network, the data center also stores the information from the verification network.

Sensor nodes are small (only a few inches around) battery-powered devices installed in the areas of interest. A typical micro node is built around a low-power micro-controller running at a few MIPS with a few kilobytes of RAM. The sensing elements take the form of a probe connected to a general-purpose signal acquisition board or are integrated into the packaging with micro-controller and wireless transmitter. Certain applications require macro sensors with additional computing power and storage. A typical macro sensor offers at least 10 times the capability, in terms of memory, processing, and communication bandwidth, of a micro node.

A patch may contain several different sensor types. All nodes in a patch form a routing tree that is used to disseminate control information and collect and process biological data. The routing tree is rooted at the gateway node, which provides access to the transit network.

The data produced by the sensor network gains scientific validity through a process of verification and corroboration. The sheer scale of a sensor network precludes frequent in-the field manual calibration, so any such application demands a systematic approach. While certain properties of the data can be checked through software services internal to the sensor patch, the data needs to be compared to independent calibrated instruments.

A verification network is the application component responsible for collecting these independent readings. It often consists of fewer but more-established sensing devices. It needs to provide the data quickly, so scientists, as well as network administrators, can adjust the function (such as detection thresholds and sampling rates) of the sensor patch, eliminate faulty sensors, and perform maintenance.

The verification network also needs to exhibit failure modes independent of the sensor patch, a property often achieved automatically, as networks employ different sensing and networking technologies. Examples of verification networks include deployments of traditional weather stations to corroborate microclimate measurements and cameras to confirm or invalidate animal-detection algorithms.

The routing service in habitat monitoring networks delivers the queries to the sensor nodes and reports the data of interest; that data is either streamlined (such as humidity sampled every five minutes) or triggered (such as when an animal enters the area of interest).

1.3 Platforms enabling WSN
Traditional network abstractions are generally not suitable for wireless sensor networks. Unlike traditional operating systems, operating systems for wireless sensor networks must tightly integrate wireless connectivity. For example, in TinyOS [5], a specialized component model exploits advanced compiler technology to simultaneously provide efficiency and reliability. These same concepts are now being incorporated into more traditional operating systems in gateway-class and high-bandwidth nodes.

We can outline the four main platform classes that have emerged in recent years in wireless sensor networks; devices from multiple platform classes often work together in real-world application deployments. The architectural similarities of sensor network devices are reviewed by exploring the core differences among classes, and consider the recent progression of sensor-network hardware, extrapolating future capabilities in future devices.

Initial deployment experience has shown that sensor network systems require a hierarchy of nodes starting at low-level sensors and continuing up through high-level data aggregation, analysis, and storage nodes. This tiered architecture is common in virtually all sensor networks as below.

	Web interfaces, databases
	The internet, A few gateway nodes

	Cameras, microphones
	Dozens of high-bandwidth sensors

	Door, window, motion sensors
	Hundreds of generic sensor nodes

	Asset tags
	Thousands of special- purpose sensors

The Berkeley Motes are a notable example of a general-sensing-class device, used today by more than 100 research organizations. The Mica2 is the most recently developed commercially available version manufactured by Crossbow Technology, constructed from off-the-shelf components to provide the greatest possible flexibility. It includes a large interface connector allowing its attachment to an array of sensors. By providing a large number of I/O pins and expansion options, the Mica2 is a perfect sensor node option for any application where size and cost are not absolutely critical. The Mica2 is capable of receiving messages from Spec nodes attached to high-value assets, including personal computers and laptops, at risk of being stolen. Crossbow Technology also manufactures the Fireboard which has sensors aggregated on a printed circuit board[3]. For special-purpose and generic-sensor-class devices, a special operating system called TinyOS [is designed to run on platforms with limited CPU power and memory space.
1.4 Location Tracking
Wireless transmitters deployed throughout an indoor environment offer the opportunity for accurate location tracking of mobile users. Using radio signal information alone, it is possible to determine the location of a roaming node at close to meter-level accuracy.

The location of each mobile node is computed using received radio signal strength from numerous fixed sensors[4]. In our deployment of First Responder Sensor Network (FRSN) software, consisting of 20 sensor nodes distributed across a 2 floor building, we present a detailed analysis of FRSN software’s performance under a wide range of conditions, including variance in the number of obstructions. Location tracking is based on empirical measurements of radio signals from multiple transmitters, using the SPOT ON algorithm [4].
2. Related Research

2.1 Mica2 Berkeley Mote
This development environment is based on low-power, embedded wireless devices, such as the Berkeley Mica2 sensor “mote”.

 The advantages of this platform over traditional 802.11 base stations are that Mica2 motes are inexpensive, small, low-power, and (most importantly) programmable. We can easily push new programs and data to each device via their radio. Nodes can operate off of battery power in case of electrical power supply failure.

 For mobile users, these nodes are small enough that they can be readily incorporated into equipment and uniforms used by the first responders, and can operate off of batteries for up to several months, depending on duty cycle.

 [image: image2.jpg]¥

“ogsg,

200 coc %
00,5, 005y FEF

3"

Figure 2. Mica2 mote.
2.2. TOSSIM
TinyOS is a programming framework for embedded systems and set of components that enable building an application- specific OS into each application. TOSSIM simulates the TinyOS network at the bit level, using TinyOS component implementations almost identical to the mica 40Kbit RFM-based stack [6]. TOSSIM provides two radio models: simple and lossy. The mica2 CC1000-based stack does not currently have a simulation implementation.
 In TOSSIM, a network signal is either a one or zero. All signals are of equal strength, and collision is modeled as a logical or; there is no cancellation. This means that distance does not affect signal strength; if mote B is very close to mote A, it cannot cut through the signal from far-away mote C. This makes interference in TOSSIM generally worse than expected real world behavior.

 The “simple” radio model places all nodes in a single cell. Every bit transmitted is received without error. Although no bits are corrupted due to error, two motes can transmit at the same time; every mote in the cell will hear the overlap of the signals, which will almost certainly be a corrupted packet. However, because of perfect bit transmission in a single cell, the probability of two motes transmitting at the same time is very, very low, due to the TinyOS CSMA protocol. The simple model is useful for testing single-hop algorithms and TinyOS components for correctness. Deterministic packet reception allows deterministic results.
The “lossy” radio model places the nodes in a directed graph.
· Each edge (a, b) in the graph means a’s signal can be heard by b.
· Every edge has a value in the range (0, 1), representing the probability a bit sent by a will be corrupted (flipped) when b hears it.
For example, a value of 0.01 means each bit transmitted has a 1% chance of being flipped, while 1.0 means every bit will be flipped and 0.0 means bits will be transmitted without an error. Each bit is considered independently.

2.3 TINYVIZ

 TinyViz is a graphical interface to TOSSIM (TOSSIM is a simulator for TinyOS wireless sensor networks) that includes several plugins for interacting and analyzing the state of the nodes during application execution.

The main TinyViz class is a jar file, tools/java/net/tinyos/sim/tinyviz.jar. TinyViz can be attached to a running simulation. Also, TOSSIM can be made to wait for TinyViz to connect before it starts up, with the -gui flag. This allows users to be sure that TinyViz captures all of the events in a given simulation. TinyViz cannot be used to visualize; instead, it is a framework in which plugins can provide desired functionality. By itself, TinyViz does little besides draw motes and their LEDs. However, it comes with a few example plugins.
[image: image3.png]

 Figure 3 – TinyViz connected to TOSSIM

 The right window of the TinyViz is the plugin window; each plugin is a tab pane, with configuration controls and data. The second element on the top bar is the Plugin menu, for activating or de-activating individual plugins. Inactive plugins have their tab panes grayed out. The third element is the layout menu, which allows you to arrange motes in specific topologies, as well as save or restore topologies. TinyViz can use physical topologies to generate network topologies by sending messages to TOSSIM that configure network connectivity and the loss rate of individual links.

The right side of the top bar has three buttons and a slider. TinyViz can slow a simulation by introducing delays when it handles events from TOSSIM. The slider configures how long delays are. The On/Off button turns selected motes on and off; this can be used to reboot a network, or dynamically change its members. The button to the right of the slider starts and stops a simulation. The delays, which are for short, fixed periods, can be used to pause a simulation for arbitrary periods. The final button, on the far right, enables and disables a grid in the visualization area. The small text bar on the bottom of the right

panel displays whether the simulation is running or paused.

The TinyViz engine uses an event-driven model, which allows easy mapping between TinyOS’ event-based execution and event-driven GUIs. By itself, the application does very little; drop-in plugins provide user functionality. TinyViz has an event bus, which reads events from a simulation and publishes them to all active plugins.
2.3.1 TinyViz Plugins
Users can write new plugins, which TinyViz can dynamically load. A simple event bus sits in the center of TinyViz; simulator messages sent to TinyViz appear as events, which any plugin can respond to.
For example, when a mote transmits a packet in TOSSIM, the simulator sends a packet send message to TinyViz, which generates a packet send event and broadcasts it on the event bus. A networking plugin can listen for packet send events and update TinyViz node state and draw an animation of the communication. Plugins can be dynamically registered and deregistered, which correspondingly connect and disconnect the plugin from the event bus. A plugin hears all events sent to the event bus, but individually decides whether to do anything in response to a specific event; this keeps the event bus simple, instead of having a content-specific subscription mechanism. Plugins register themselves with the TinyViz event bus, which then notifies them of all events coming in from TOSSIM; it is up to an individual plugin whether to do something. The draw method is used to draw visualizations in the left pane of the TinyViz window.
2.3.2 Radio model
The Radio Model Plugin sets the bit error rate between motes according to their location and various models of radio connectivity. Enabling this plugin allows you to use realistic connectivity models in our simulations. There are two built-in models: "Empirical" (based on an outdoor trace of packet connectivity with the RFM1000 radios) and "Fixed radius" (all motes within a given fixed distance of each other have perfect connectivity and no connectivity to other motes). Setting the "scaling factor" in the control panel simply scales the distance parameter of the model. Increasing the scaling factor will decrease the connectivity range of the chosen model. By selecting a mote in the display you can see its connectivity to other motes -- the number shown next to each edge is the probability of a packet getting through. Changing the scaling factor and clicking "update model" will update the model parameters, as will move motes around in the display [6].

2.3.3 Obstructed Radio Model Plugin

 Jeff Rupp extended the built-in TinyViz radio model plugin to include obstructions, i.e. walls, and their impact on inter-mote communication [7]. This plug-in is a purely line-of-sight 2-D implementation.

 Refer to the screenshot below and note the floor plan is similar to an architect’s blueprint. The values shown above the green lines represent the probability of successful packet transmission through the wall. Obstructions are defined with an input file that can be loaded into the simulator using the Load Obstructions button. The obstructions are two dimensional line segments with a specific attenuation.
Motes attempting to send and receive messages that intersect with the obstruction experience radio signal loss proportional to the defined obstruction attenuation. Indeed, this is an enhancement of the radio model plugin which simulates message passing with distance as the only constraint.

 Distance is still a factor and can be tuned using the Fixed Radius and Empirical propagation models. The former allows all motes within a fixed distance to have perfect connectivity and no connectivity for other motes. The latter is based on an outdoor trace of packet connectivity with the RFM1000 radios.

 Obstructed Radio plugin extension is successful because it provides an additional real-world variable that would need to be addressed when deriving mote deployment strategies. The plugin can be modified further to account for radio signal reflection or signal distortion. Figure 4 shows the TinyViz with Obstruction Radio Signal Plugin.
[image: image4.png]& Tinyviz

s Time: ooses oy O————ame (11 |

e A
e L | A
| Sl e e

B i e —
% 7] outEdges | Fixed radius (100.0) ¥

Load Obstructins

Registring: Obstructed Radio model

Figure 4 – TinyViz with Radio Signal Obstruction Plugin

Radio signals are obstructed by varying amounts by different materials. Formula for loss in free space over distance

 Path Loss = 20 * logn [4 * п * d] [dB], where [d = distance (same units as λ)]

 ------------ [λ = wavelength (same units as d)]

 λ

Wavelength = 300/ frequency in MHz

A 433 MHz Mote has a range of about 1000 ft, which says it can receive at an attenuation of about 70 dB. Jeff assumes 60dB to equate a maximum error rate since 70dB becomes too high for decent transmission [7]. If we want the walls to be completely opaque to the motes, then we set the attenuations to at least 60 dB.
The reduction in signal strength is called attenuation; it is rated in decibels and is defined mathematically as:

	
[image: image5.wmf](

)

level

power

output

level

power

input

log

10

*

An example, a wall represents approximately 4db of attenuation if the input signal strength is 500 milliwatts and reduces to 250 milliwatts after passing through. An excessive amount of attenuation will lead to signal loss and consequently loss of information. In the application of the FRSN, signal loss translates to message loss that could endanger the lives of first responders and the lives needing rescue assistance. Walls/Ceilings/Floors have an attenuation of about 3-12dB. Attenuation of indoor RF signals is complex to calculate. As the signals encounter obstacles they are reflected, diffracted, and scattered. Fortunately, the attenuation of common indoor obstructions is known. For example,

	Material
	Attenuation

	Plasterboard wall
	3dB

	Glass wall with metal frame
	6dB

	Cinder block wall
	4dB

	Office window
	3dB

	Metal door
	6dB

	Metal door in brick wall
	12.4dB

Table 1 – Known attenuation values
Another factor is distance: as a general rule of thumb, 802.11b radio signals operating at 11Mbps encounter 100dB of attenuation at 200 feet distance between sender and receiver. Note that the distance of this path decreases if obstacles are encountered; that is, 100dB attenuation will be reached at a distance less than 200 feet if obstructions intersect RF signal [8].
2.4. Indoor 3D Location Tracking
2.4.1 Concept

The location sensing architecture we set out to build is conceptually simple even though the algorithm implementation is certainly nontrivial. Multiple sensors provide signal strength measurements mapping to an approximate distance. These values are aggregated to get the precise position of the tagged object.

 [image: image6.png]

Blue node:
 Sink

Red node:
 Sensor
Figure 5 – Track the Tagged Object
2.4.2 Aggregation Algorithm

A straightforward hill-climbing algorithm attempting to minimize signal strength error relative to empirical data is used to compute the location. The algorithm works as follows:

1. Choose a random coordinate position s and constant distance m.

2. For each of the 6 possible points p located m units in the primary xyz directions, do the

 following:

a. Compute a prediction vector Vp of signal strength values based on the distance d

 using Equation 1 to each sensor node from point p using Equation 2 derived

 from empirical data.

b. Compute an error vector Ep where each element of Ep is a difference of squares

 of the predicted and observed signal strength values.

3. s := p where Ep is less than the current minimum error value.

4. When s does not change, return s.

Equation 1 and 2 is the function based on empirical data mapping distance to a sensor node (d) to a signal strength estimate (SS). Note that SS is in abstract units.

[image: image7.png]

Equation 1: Euclidean distance

SS Probability of successful transmission

Equation 2: Signal Strength from Distance Computation

The move distance m is chosen to be a constant small value mapping to approximately 6 inches of distance. An easy optimization to this algorithm is to choose s to start at the last computed position instead of at random with each new location computation.

3. Development

3.1 Calculating Signal Strength (SS)

Using Nelson Lee/Jeff Rupp Calculation [7]
a) The getPacketLossRate() written by Nelson Lee calculates the probability of transmission using the propagation model, i.e. empirical, fixed radius, with distance and scaling factor as parameters. The empirical model implementation contains static values representative of historical data, on distances. The stored distances are part of a three-tuple that include a standard deviation and mean. Given a scaled distance between motes, the closet approximation to the stored distance tuple is selected. This 3-tuple is used in a Box-Muller transformation to derive a sample whose value represents the packet loss rate.

b) The getBitLossRate , the bit loss rate is calculated using the packet loss rate. The disc model is much simpler. The packet loss rate is all or nothing. If the scaled distance exceeds the fixed radius, then entire packet loss is experienced, else packet loss is not experienced. And the bit loss rate is equal to the packet loss rate.

c) adjustForObstructions_Responders() adjusts the bit loss rate to account for obstructions.

The packet loss rate will be used as the probability of successful transmission by the algorithm.

Using Free Space Loss Calculation[9]
a) Path Loss = 10+ 20 * log 10 [d] [dB], [where d is in feet]

b) Convert the Path loss value in decibels to scaledBitLossRate

c) adjustForObstructions_Responders() further adjusts the bit loss rate to account for obstructions.

d) The scaledBitLossRate is then converted to a % Signal Strength

3.2 Multi-floor setup of the Stationary Sensor Nodes
[image: image8.png]File Layout Plugin sim Time: 000ses Dasy Q————"oms @ o 2
Heighborhood graph | Obstructed Radio model | Radio inks
Debug messages | Directed Grapn | Settocation | Sent radio packets
€ ADC Readings | Setbreaicooint | Catamari | entroia | Contour points
Radio model Responder model | autoRun logger (do not disable)
Distanoe soating factor
1 o — " Update | [7] Out Edges
¢ <
P
[
g A
€ €
1
3 € Load Obstructions | | Load Responder
0
¢ 1
€

 Figure 6 – Multifloor Setup

The aggregation algorithm referenced in section 2.4.2 was first applied to track a responder in a single floor in 2D. The code was then extended to a 3D multi-floor environment applied to 2 floors. For sake of simplicity, the following assumptions were made:

· The layout of each floor is identical.

· Every floor is setup with equal number of Sensor nodes 10ft above the floor. The mote layout is identical for each floor.

· The floor height is set at 10 ft.

· The attenuation of the floor/ceiling is assumed to be 20dB.
3.3 Location sensing of the Actual Mobile mote or First Responder
3.3.1 Single Floor Location Tracking

The LocationTracking() predicts the location of the Actual Mobile Mote.
Here is the algorithm for the Location Tracking method
1 Get the Actual Mobile Mote position.

2 Draw the mote on the GUI as a red square.

3 Get all stationary sensor motes.

4 Set z=10 for all the motes (First Floor).

5 Calculate Signal Strength (SS) between the Actual Mobile Node and Sensor Motes using Free Space Loss Calculation.

6 Get 4 motes with highest signal strength.

7 Get a weighted average of the x, y co-ordinate of the motes to determine predicted position of Responder (PR(x, y)). Set z = 5 so as to start in the middle of the room.

8 Assume m = 0.5ft

9 Get 6 points P0,P1,P2,P3,P4,P5 such that

P0(x, y, z) = PR(x + m, y, z)

P1(x, y, z) = PR(x –m, y, z)

P2(x, y, z) = PR(x, y + m, z)

P3(x, y, z) = PR(x, y-m, z)

P4(x, y, z) = PR(x, y, z + m)

P5(x, y, z) = PR(x, y, z-m)

10 For every position P’ in (P0 to P5)

11 Calculate the Signal Strength (SS) between P’ and 4 strongest Sensor Motes.

12 Calculate sum of squares of errors (E) between predicted Mote Strengths and Actual mote strengths

13 Position P’ with minimum error (E) is the next PR.

14 End For loop

15 If minimum error < 0.5 OR number of iterations >== 100, we consider Position P’ as the BEST Predicted Mote.

16 Draw the mote on the GUI as a green square.

[image: image9.png]File Layout Plugins.

sin Times 0.000sms 0oy Q" 01 @

ERER B OBRSAR G

e
" A R e W e o
] I Responder model AutoRun fogger do ot disable
" D‘mincescih"vhcwv o e
N
.
<
<
"
[} <
"
<
n
u
Load Responder
<
= m
< 12
L] | I

Registering: Rasponder model

Figure 7. Track the Responder on a single floor ⁪ - Actual Position ⁪ - Predicted Position

3.3.2 Multiple Floor Location Tracking

The LocationTracking() predicts the location of the Actual Mobile Mote in a multi-floor setup.
Here is the algorithm for the Location Tracking method
1 Get the Actual Mobile Mote position.

2
Draw the mote on the GUI as a red square.

3
Get all stationary sensor motes.

4
Set z=10 for half the motes (1st floor) and z=20 for the remaining half (2nd floor).

5
Calculate Signal Strength (SS) between the Actual Mobile Node and Sensor

 Motes using Free Space Loss Calculation.

6 Get top 4 motes with highest signal strength.

7 Get a weighted average of the x, y, z co-ordinate of the motes to determine predicted position of Responder (PR(x, y, z)).

8 Assume m = 0.5 ft

9 Get 6 points P0,P1,P2,P3,P4,P5 such that

P0(x, y, z) = PR(x + m, y, z)

P1(x, y, z) = PR(x –m, y, z)

P2(x, y, z) = PR(x, y + m, z)

P3(x, y, z) = PR(x, y-m, z)

P4(x, y, z) = PR(x, y, z + m)

P5(x, y, z) = PR(x, y, z-m)

10 For every position P’ in (P0 to P5)

11 Calculate the Signal Strength (SS) between P’ and 4 strongest Sensor Motes.

12 Calculate sum of squares of errors (E) between predicted Mote Strengths and Actual mote strengths

13 Position P’ with minimum error (E) is the next PR.

14 End For loop

15 If minimum error < 0.5 OR number of iterations >== 100, we consider Position P’ as the BEST Predicted Mote.

16 Draw the mote on the GUI as a green square.

4. Performance

Using collected data, the system can infer where users or pieces of equipment are currently located.

The metrics used to determine performance include

· Tracking Error

· Convergence of the Algorithm

· Scaling Factors

· Varying heights(Z coordinate) of Responder

· Number of strongest motes used in tracking algorithm.

[image: image10.png]File Layout Plugins.

sin Times 0.000sms 0oy Q" 01 @

Obstructed Radio model | ragounke | Rediomoder
Directed Graph | Setiocation | Sentradio packets | Heighborhood graph
ADC Readings | Set breaicooint | catamari | centroia | Contour points | nebug messages
n P € Responder model
H [» AutoRun ogger (do no dsable)
Bttt
n by T
17 < &
€ - €
[]
&
L]
w
n R |
-
n [] []
2
[] u é
u []

Registering: Rasponder model

 Figure 8 – Track the Responder on a two floors ⁪ - Actual Position ⁪ - Predicted Position

The results of the simulations are summarized in the following sections.
4.1 Effect of Scaling Factors

[image: image11.emf]1.19 1.19

35%

2.29

35%

2.29

0.0

0.5

1.0

1.5

2.0

2.5

Tracking Err

Avg (ft)

Tracking Err

Var (ft)

%

Unconverged

Single Flr, Z Vary,

Top 4, SF=1

Single Flr, Z Vary,

Top 4, SF=2

 [image: image12.emf]2.61

12.80

40%

5.31

104.69

47%

0

20

40

60

80

100

120

Tracking Err

Avg (ft)

Tracking Err

Var (ft)

% Unconverged

Multi Flr, Z Vary,

Top 4, SF=1

Multi Flr, Z Vary,

Top 4, SF=2

Figure 9. SF1 vs SF2 in Single Floor Figure 10. SF1 vs SF2 in Multi Floor

In Figure 9, for the single floor case, the scaling factor had no affect on the results of the location tracking algorithm. The tracking results were identical, viz. an average error of 1.2 ft with a variance of 2.3 feet which is encouraging. 35% of the runs did not converge.
In the multi-floor case (Figure 10), surprisingly the scaling factors had an effect on the results of the location tracking algorithm. The Tracking Error nearly doubled to 5.31(ft) when the scale factor was increased to 2. SF=1 had convergence issues with 40% of the data and SF=2 of 47%. The difference in convergence is not as significant. The variance in tracking error for SF2 was significantly high (104.69 ft), which is primarily because of a few big errors for some data points.
4.2 Effect of Varying Z value for responder
[image: image13.emf]1.03

2.12

25%

1.19

2.29

35%

0.0

0.5

1.0

1.5

2.0

2.5

Tracking Err

Avg (ft)

Tracking Err

Var (ft)

% Unconverged

Single Flr, Z Fixed,

Top 4, SF=1

Single Flr, Z Vary,

Top 4, SF=1

Figure 11. Fixed Z vs. Varying Z in Single Floor
In the single-floor case, varying the height of the responders i.e. the Z coordinate (Graph 3) increased the average Tracking Error to 1.19(ft) from 1.03(ft). The convergence issues also increased marginally. The differences are small, and one can conclude that the algorithm is quite robust to changes in the z co-ordinate of the responder. The variance in tracking error also did not change much after varying the height of the responders.
4.3 Effect of using Top4 vs. Top3 motes in the Algorithm

 Figure 12.Top4 vs. Top3 in Single Floor Figure 13. Top4 vs. Top3 in Multi Floor
In Figure 12, using the top3 motes in the tracking algorithm more than doubled the average Tracking Error (2.29ft) in a single-floor case compared to the top4 algorithm (1.03 ft). It was interesting to note that the convergence issues in top3 algorithm went down to 20%. This indicates an increase in robustness of the algorithm using fewer sensor motes, at the expense of tracking accuracy.

In Figure 13, in multi-floor algorithm, using the strongest 3 motes again resulted in a higher average Tracking Error of 4.63ft. There were zero convergence issues in Top3 compared to 40% issues in Top4 algorithm.
In both the single floor and the multi-floor case, there is a significant increase in the variance in the tracking error, indicating poorer tracking accuracy using three sensor motes versus four.
5. Conclusion

In this report, I present FRSN, an indoor multi-floor locating tracking system for first responders, using the wireless sensor network with mica2 motes. The location process is divided into two phases. In the first phase we setup the motes and in the second phase we apply the algorithm to estimate location of a target mote by comparing the signal strength errors between the actual mote and the target mote. The impact of scaling factor, height of responders, the number of initial chosen sensor set on the algorithm performance are analyzed and proved to be rather robust. TinyViz was extended to display the estimated location results. This concept can be developed using small, inexpensive and low-power devices and could provide an attractive solution to the critical problem of indoor location tracking.
6. References
1. David Culler and Wei Hong, “Wireless Sensor Networks,” CACM, Vol. 47 No. 6, June 2004, pp. 30-33.
2. Robert Szewczyk, Eric Osterweil, Joseph Polastre, Michael Hamilton, Alan Mainwaring, Deborah Estrin, “Habitat Monitoring With Sensor Networks,” CACM, Vol. 47 No. 6, June 2004, pp. 34-40.

3. Jason Hill, Mike Horton, Ralph Kling, and Lakshman Krishnamurthy, “The Platforms Enabling Wireless Sensor Networks,” by, Vol. 47 No. 6, June 2004, 41-46.

4. Jeffrey Hightower and Gaetano Borriello, “SpotOn: An indoor 3D Location Sensing Technology Based on RF Signal Strength,” University of Washington, UW CSE Technical Report #2000-02-02, February 18, 2000. http://seattle.intel-research.net/people/jhightower//pubs/hightower2000indoor/hightower2000indoor.pdf
5. “TinyOS”, http://www.tinyos.net/.
6. Philip Levis and Nelson Lee, “TOSSIM: A Simulator for TinyOS Networks,”

 (Version 1.0 - June 26, 2003), September 17, 2003. http://www.cs.berkeley.edu/~pal/research/tossim.html
7. Jeff Rupp, “Radio Signal Obstruction Plug-in for TinyViz,” CS526 Semester Project Report, UCCS, Fall 2003. http://cs.uccs.edu/~cs526/studentproj/projF2003/jdrupp/doc/CS526_JeffRupp.doc
8 Jim Geier, “Beating Signal Loss in WLANs”

 http://wi-fiplanet.com/tutorials/article.php/1431101
9. “Free Space Path Loss”, http://www.rfcafe.com/references/electrical/path_loss.htm
10. Konrad Lorincz and Li Li, “MoteTrack: A Robust, Decentralized Approach to RF-Based Location Tracking,” Proceedings of the International Workshop on Location and Context-Awareness (LoCA 2005) at Pervasive 2005, May 2005. http://www.eecs.harvard.edu/~konrad/projects/motetrack/MoteTrack-LoCA2005.pdf
11. Adrian Perrig, John Stankovic, and David Wagner, “Security in Wireless Sensor Networks,” CACM, Vol. 47 No. 6, June 2004, pp. 53-57.

7. Appendix

7.1 Installation Guide
Here are the installation step of FRSNTracking software package:
1. Install basic TinyOs-1.1.0-1is.exe software package.

2. Download Jeff Rupp's cs526demo.zip from
 http://cs.uccs.edu/~cs526/studentproj/projF2003/jdrupp/src/

3. Move the main.exe and AutoRun.java to
 $tinyos\cygwin\opt\tinyos-1.x\tools\java\net\tinyos\sim\

4. Move LineObstruction.java, ObstructRadioModelPlugin.java,

 ObstructionIF.java to $tinyos\cygwin\opt\tinyos-1.x\tools\java\net\tinyos\sim\plugins

5. Download FRSNTracking files. to the tinyOS plugin directory.
 i.e D:\tinyos\cygwin\opt\tinyos-1.x\tools\java\net\tinyos\sim\plugins

6. move ActualMobileNode.java, PredictedMobileNode.java, MobileNode.java,

 MobileNodeIF.java, RespObstructRadioModelPlugin.java,LineObstruction.java
 to $tinyos\cygwin\opt\tinyos-1.x\tools\java\net\tinyos\sim\plugins

7. move MoteCoordinateAttribute.java

 to $tinyos\cygwin\opt\tinyos-1.x\tools\java\net\tinyos\sim\

8. move 1floor_obstructions,Multi_floor_layput.mps to

 $tinyos\cygwin\opt\tinyos-1.x\tools\java\net\tinyos\sim\ui

9. cd $tinyos\cygwin\opt\tinyos-1.x\tools\java\net\tinyos\sim

10. make
Single floor Run

11 run as <./tinyviz -run main.exe 15> to do 15 motes, the ./ may be required to get the
 copy of the script in the current directory, rather than the normal tinyviz script. This
 should launch the TinyViz gui, with 15 motes in the left hand pane

12. choose Plugins menu->Responder Model. This command enables the new plugin.

 in the tab this menu selection brings up on the right for the plugins,
13. Use the Load Obstructions button to load the file: 'Single_floor_obstructions' from the
 ui directory. This will draw several lines representing walls on the left pane

14. Use the File Load option to load the file :’Single_floor_layout.mps’ from the ui

 directory. This file was created to optimize the placement of the motes to ensure an
 efficient communication network.

15. Use the Load Responder button to load the Responder file: ’Singleflr responder

 positions’ from the ui directory.

Multi floor Run

16 run as <./tinyviz -run main.exe 30> to do 30 motes, the ./ may be required to get the
 copy of the script in the current directory, rather than the normal tinyviz script. This
 should launch the TinyViz gui, with 30 motes in the left hand pane

17. choose Plugins menu->Responder Model. This command enables the new plugin.

 in the tab this menu selection brings up on the right for the plugins,
18. Use the Load Obstructions button to load the file: 'Multiple_floor_obstructions' from
 the ui directory. This will draw several lines representing walls on the left pane

19. Use the File Load option to load the file :’Multiple_floor_layout.mps’ from the ui

 directory. This file was created to optimize the placement of the motes to ensure an
 efficient communication network.

20. Use the Load Responder button to load the Responder file: ’Multiflr z changing

 responder positions’ from the ui directory.

This file will draw two rectangles/responders.

 * A RED colored rectangle depicting the actual position of the responder.

 * A GREEN colored rectangle depicting the predicted position of the responder

[image: image14.png]File Layout Plugins.

s Tine: ooses oy O————ome (11 |

<
3 P
< <
@
<
e o
< <
1
1 <
<
"
< 1
<

e o e

A R |

Fadtio mode! | Responder model

AutoRun logger (do not disable)

Ditance soaling factr
— " Update | [7] Out Edges

Load Obstructions | | Load Responder

 Figure 14. Predict the Responder ⁪ - Actual Position ⁪ - Predicted Position

7.2 Simulation Data

Single Floor simulation, Scale Factor=1, and fixed z=5 for actual responder

	Obs. No.
	Actual Responder Position
	Predicted Responder Position
	Square Mote Strength Error
	Number of Iterations
	Tracking Error (ft)

	
	X
	Y
	Z
	X'
	Y'
	Z'
	
	
	

	1
	24
	13
	5
	24.01
	13.21
	5.00
	0.36
	30
	0.21

	2
	35
	13
	5
	35.13
	12.79
	5.00
	0.36
	13
	0.25

	3
	64
	13
	5
	63.99
	12.75
	5.50
	0.36
	23
	0.56

	4
	76
	13
	5
	75.48
	13.09
	4.00
	0.72
	100
	1.13

	5
	47
	19
	5
	46.73
	19.07
	5.00
	0.36
	14
	0.28

	6
	47
	27
	5
	46.73
	27.14
	5.00
	0.36
	3
	0.31

	7
	47
	35
	5
	47.21
	35.05
	5.00
	0.36
	10
	0.22

	8
	47
	43
	5
	47.46
	42.92
	5.00
	0.36
	3
	0.46

	9
	47
	55
	5
	47.47
	55.16
	5.00
	0.36
	1
	0.50

	10
	47
	67
	5
	47.21
	67.29
	5.00
	0.36
	14
	0.36

	11
	47
	80
	5
	46.94
	77.94
	2.00
	3.24
	100
	3.64

	12
	18
	22
	5
	17.81
	21.81
	5.00
	0.36
	43
	0.27

	13
	37
	19
	5
	37.02
	18.93
	5.00
	0.00
	1
	0.07

	14
	18
	40
	5
	18.04
	39.87
	4.50
	0.36
	37
	0.52

	15
	35
	67
	5
	35.06
	67.08
	5.00
	0.36
	9
	0.10

	16
	19
	79
	5
	19.01
	78.71
	4.00
	0.36
	62
	1.04

	17
	78
	39
	5
	75.50
	39.37
	1.00
	7.56
	100
	4.73

	18
	50
	20
	5
	50.08
	19.30
	4.50
	10.50
	100
	0.86

	19
	56
	80
	5
	55.93
	79.74
	4.50
	0.00
	31
	0.57

	20
	79
	66
	5
	76.76
	66.09
	1.00
	7.92
	100
	4.59

†Strongest 4 motes used
Single Floor simulation, Scale Factor =1, and varying z values for actual responder
	Obs. No.
	Actual Responder Position
	Predicted Responder Position
	Square Mote Strength Error
	Number of Iterations
	Tracking Error (ft)

	
	X
	Y
	Z
	X'
	Y'
	Z'
	
	
	

	1
	24
	13
	2
	23.62
	13.28
	2.50
	0.72
	100
	0.69

	2
	35
	13
	5
	35.13
	12.79
	5.00
	0.36
	13
	0.25

	3
	64
	13
	4
	63.96
	12.78
	4.50
	0.36
	23
	0.55

	4
	76
	13
	5
	75.48
	13.09
	4.00
	0.72
	100
	1.13

	5
	47
	19
	6
	47.11
	19.08
	6.00
	0.36
	18
	0.13

	6
	47
	27
	5
	46.73
	27.14
	5.00
	0.36
	3
	0.31

	7
	47
	35
	1
	47.19
	35.00
	1.00
	0.00
	18
	0.19

	8
	47
	43
	5
	47.46
	42.92
	5.00
	0.36
	3
	0.46

	9
	47
	55
	3
	47.47
	55.17
	3.00
	0.36
	5
	0.50

	10
	47
	67
	4
	46.69
	66.73
	4.00
	0.36
	14
	0.41

	11
	47
	80
	5
	46.94
	77.94
	2.00
	3.24
	100
	3.64

	12
	18
	22
	5
	17.81
	21.81
	5.00
	0.36
	43
	0.27

	13
	37
	19
	2
	37.01
	18.93
	2.00
	0.00
	7
	0.07

	14
	18
	40
	5
	18.04
	39.87
	4.50
	0.36
	37
	0.52

	15
	35
	67
	6
	35.08
	67.11
	6.00
	0.00
	11
	0.14

	16
	19
	79
	5
	19.01
	78.71
	4.00
	36.00
	62
	1.04

	17
	78
	39
	7
	76.50
	39.38
	3.00
	3.24
	100
	4.29

	18
	50
	20
	5
	50.08
	19.30
	4.50
	10.50
	100
	0.86

	19
	56
	80
	8
	56.44
	78.77
	4.50
	3.24
	100
	3.74

	20
	79
	66
	5
	76.76
	66.09
	1.00
	7.92
	100
	4.59

†Strongest 4 motes used
Multi Floor simulation with SF=1 and varying z values for actual responder
	Obs. No.
	Actual Responder Position
	Predicted Responder Position
	Square Mote Strength Error
	Number of Iterations
	Tracking Error (ft)

	
	X
	Y
	Z
	X'
	Y'
	Z'
	
	
	

	1
	24
	13
	12
	24.05
	13.65
	11.79
	0.00
	26
	0.68

	2
	35
	13
	5
	34.99
	12.93
	4.82
	6.84
	100
	0.19

	3
	64
	13
	14
	64.27
	14.19
	14.14
	0.00
	13
	1.23

	4
	76
	13
	15
	76.12
	13.51
	14.95
	0.36
	30
	0.53

	5
	47
	19
	16
	46.19
	18.74
	15.76
	0.36
	26
	0.89

	6
	47
	27
	5
	47.24
	26.81
	5.08
	0.36
	21
	0.31

	7
	47
	35
	11
	47.31
	35.06
	10.92
	0.36
	23
	0.32

	8
	47
	43
	5
	46.67
	42.77
	5.22
	0.36
	23
	0.46

	9
	47
	55
	13
	48.38
	54.60
	13.08
	0.36
	7
	1.44

	10
	47
	67
	4
	47.58
	67.17
	3.74
	0.72
	100
	0.65

	11
	47
	80
	5
	45.89
	75.72
	1.30
	414.00
	100
	5.76

	12
	18
	22
	5
	17.91
	21.71
	4.98
	330.19
	100
	0.31

	13
	37
	19
	12
	38.50
	28.89
	11.54
	0.36
	20
	10.01

	14
	18
	40
	5
	17.96
	39.88
	5.06
	0.36
	63
	0.14

	15
	35
	67
	6
	34.94
	73.85
	4.37
	0.36
	33
	7.05

	16
	19
	79
	5
	19.44
	74.31
	2.30
	203.00
	100
	5.43

	17
	78
	39
	17
	78.10
	39.26
	16.30
	0.72
	100
	0.75

	18
	50
	20
	5
	50.33
	16.68
	5.50
	40.23
	100
	3.38

	19
	56
	80
	18
	56.01
	79.80
	17.52
	0.36
	22
	0.52

	20
	79
	66
	15
	66.81
	66.42
	15.21
	416.00
	100
	12.20

†Strongest 4 motes used

Internet

Verification Network

Patch Network

Transit Network

PAGE
21

_1194772570.vsd

_1194119988.unknown

