
Active Cache: Caching Dynamic
Contents on the Web

Pei Cao, Jin Zhang and Kevin Beach
Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53705, USA
fcao,zj,kbeachg@cs.wisc.edu

Abstract
Dynamic documents constitute an increasing percentage of contents on the Web, and
caching dynamic documents becomes an increasingly important issue that affects the
scalability of the Web. In this paper, we propose the Active Cache scheme to support
caching of dynamic contents at Web proxies. The scheme allows servers to supply
cache applets to be attached with documents, and requires proxies to invoke cache
applets upon cache hits to furnish the necessary processing without contacting the
server. We describe the protocol, interface and security mechanisms of the Active
Cache scheme, and illustrate its use via several examples. Through prototype imple-
mentation and performance measurements, we show that Active Cache is a feasible
scheme that can result in significant network bandwidth savings at the expense of
moderate CPU costs.

Keywords
World-Wide Web, caching, scalability, Java applets, network security

1 INTRODUCTION

The growth of the Internet and the World Wide Web has significantly increased the
amount of online information and services available to the general population of the
society. However, the client/server architecture employed by the current Web-based
services is inherently un-scalable. Caching at proxies that are located at network ac-
cess points has been proposed as a solution to the scalability problem. Unfortunately,
caching in the Web today has been seriously limited by the inability to cache dynamic
documents, including documents that change upon every access, documents that are
results of queries, and documents that embody client-specific information (for exam-
ple, cookies). Furthermore, lack of server control on accesses to cached documents
results in the “caching busting” practice from the servers, severely undermining the
scope of cacheable documents.

To solve these problems, we propose a scheme called Active Cache, which mi-
grates parts of server processing on each user request to the caching proxy in a flexi-
ble, on-demand fashion via “cache applets.” A cache applet is a server-supplied code
that is attached with a Universal Resource Locator (URL) or a collection of URLs.
The code is typically written in a platform-independent programming language such
as Java When caching a document, the proxy also fetches the corresponding cache
applet. When a user request hits on the cached copy and the proxy would like to
service the request, the proxy must invoke the cache applet with the user request and
other information as arguments. The cache applet then decides what the proxy will
send back to the user, either giving the proxy a new document to send back to the
user, or allowing the proxy to use the cached copy, or instructing the proxy to send
the request to the Web server. Furthermore, the applet can deposit information in a
log object, which is sent back to the server periodically and when the applet or the
document is purged from the cache.

Cache applets allow servers to obtain the benefit of proxy caching without losing
the capability to track user accesses and tailor the content presentation. They can per-
form a variety of functions, for example, logging user accesses, rotating advertising
banners, checking access permissions, constructing client-specific Web pages, etc.
They also enable proxies to be more than just caches of static information, but rather
caches of objects, i.e., data with a method that is invoked when the data are supplied
from caches. In essence, they turn Web documents from datagram to objects.

The proxy, when caching a document with cache applets, has the full freedom
to not invoke the applet but send the user request directly to the server. The proxy
promises to not send back a cached copy of a document without invoking the cor-
responding cache applet. On the other hand, if a document is cached but the corre-
sponding applet consumes too much resource, the proxy can simply send the request
to the Web server. Furthermore, just as the proxy is not obligated to cache any docu-
ment, it is not obligated to cache any applet. The proxy agrees to not service a cache
hit if the corresponding applet is not in cache.

The proxy’s freedom of managing its own resource and the association between
cache applets and URLs allow an on-demand migration of server functionalities. The

proxy only fetches and executes the applet when there are user requests to the associ-
ated URL. Controlling its own resource allocation, the proxy can devote resources to
the applets associated with the hottest or the most important URLs to its users. Since
the proxy that receives the user request is typically the closest proxy to the user, the
scheme automatically migrates the server processing to nodes that are close to users,
significantly increasing the scalability of Web-based services.

In this paper, we describe the protocol and interface between the server-supplied
cache applets and the proxies in the Active Cache paradigm, and the security mech-
anisms to guard the applets’ execution and protect the proxy. We then give examples
of cache applets to illustrate the Active Cache paradigm, and discuss proxy’s re-
source management policies. Finally, we report our experience with an early Active
Cache prototype, focusing on the overhead incurred by cache applets.

2 THE ACTIVE CACHE PROTOCOL

In Active Cache, the Web server specifies the association between a cache applet and
a URL-named document by sending a new entity header, “CacheApplet,” with the
document:

� CacheApplet: code = “code.class”, archive = “code.jar”, codebase = “codebase url”

The header follows the convention for applet specification in HTML documents. It
specifies that the applet “code.class” at code base ”codebase url” is the cache applet
for the document, and associated classes are grouped in an archive (4). Codebase and
archive directives are optional. Since HTTP/1.1 allows the introduction of new entity
headers, and requires that if a proxy does not recognize an entity header, it should
forward the header, the server can be assured that Active-Cache enabled proxies will
receive the header even if they have parent proxies.

For security concerns, we require that the codebase of the applet, if present, has
the same server URL as the document. That is, only the Web server who provides
the document can supply the applet for it.

An Active-Cache enabled proxy agrees to fulfill the following obligations:

� if the document is cached and a user request hits on the document, it will either
invoke the cache applet, or send the request directly to the server.

� if the applet’s execution fails due to any reason, the request is sent to the server;
� if the applet’s execution succeeds, the proxy will take the appropriate action based

on the return value of the FromCache method (see below);
� each applet can deposit information in a special log object (whose name is the

name of the applet appended by “.log”), and the proxy will send the log object
back to the server periodically. If the proxy evicts the log object from the cache,
it will first send the object to the server.

In other words, the proxy will not return a cached reply to the user unless the cache
applet has been executed successfully, and the applet can deposit information in the
log object which will eventually be reflected back to the server.

However, the proxy decides whether it wants to cache the document, when it
fetches the applet and the archive, and whether it wants to invoke the applet. Fur-
thermore, the proxy can evict any document or any applet from its cache at any time.
The only constraint on the proxy is the above agreement.

The proxy’s freedom means that the cache applet may not process every request to
the document, and some requests might instead go to the original server. The applet
does not capture every request to the document, but captures every “cache hit” to the
document.

2.1 Active Cache Interface

The cache applet must implement an interface called “ActiveCacheInterface.” Cur-
rently, we require that the applet be written in Java. The interface defines a function
called FromCache. The function is called when an access hits in the document, and
the arguments of the function call include the user request, the IP address of the client
machine, the name of the client machine, the document in cache, and a new file de-
scriptor for the applet to write when constructing a new Web page. The prototype of
the function is listed below:

� public abstract int FromCache(String User HTTP Request,
String Client IP Address, String Client Name, int Cache File, int New File);

The arguments are included based on the principle that any information that the
server can gather if the request goes to the server can be seen by the cache applet.
The function can only return three values:

� 1: the content placed in New File is to be returned to the user as the reply to the
HTTP request;

� 0: the content in Cache File can be returned to the user as the reply;
� -1: the request must be forwarded to the server.

All other return values are treated as -1.
The cache applet can only call the ActiveProxy class to perform its functions. The

ActiveProxy class provides the native methods for file access , cache query, locking
and unlocking as well as sending requests to servers. Currently, the methods include:

� public native static boolean is in cache(String URL);
� public native static int open(String URL, int mode);
� public native static int close(int fd);
� public native static int create(String URL, int mode);

� public native static int read(int fd, byte[] buf, int size);
� public native static int write(int fd, byte[] buf, int size);
� public native static long lseek(int fd, long off, int where);
� public native static int send request to server(String HTTP Request);
� public native static int lock(int fd);
� public native static int unlock(int fd);
� public native static String curtime();

As we gain more experience with the Active Cache paradigm, other necessary meth-
ods might be added to the ActiveProxy class.

An applet’s execution can be aborted at any time. All changes to files and objects
are voided if the execution is aborted. In other words, file changes are not committed
until the applet finishes its execution.

The restrictions on the use of the proxy calls are the following:

� is in cache, open for read, lseek, read and close can only be called on URL-named
documents that are from the same server. In other words, the proxy verifies that
the server URL of the document is the same as the server URL of the cache applet;

� open for write, create, write, lock and unlock can only be applied to URL-named
objects that the applet has created; the create call automatically appends the ap-
plet’s URL to the object’s name;

� send request to server can only send HTTP requests to the Web server; the method
automatically connects to the server where the cache applet comes from.

� curtime provides a timing granularity of one second.

Furthermore, all exceptions are caught and result in a return value of -1 for the From-
Cache method.

Objects created by an applet (including the log object) are invisible to the outside
world except to the original server that sends the applet. A server can gather the log
objects of its applets through the Internet Cache Protocol (ICP) (3). ICP is originally
designed for cache sharing and serves as a convenient channel for servers to gather
log objects.

In addition to the ActiveProxy methods, the only other packages present in the
Java run-time environments are java.util, java.text, java.math, java.security and java.sql.
All other packages, including java.io, java.lang, and java.systems, are simply not
loaded. The proxy can do so because the cache applet has only one purpose, that is,
performing per-request processing of the document, and thus needs a very simple
security interface.

2.2 Cache Applet Examples

The Active Cache protocol allows a rich variety of processing to be accomplished at
the proxy system. Below, we describe the applets we have implemented.

2.2.1 Logging User Accesses
One of main reasons many Web servers disable caching is to collect information on
who access their documents. Both server and proxy suffer from such practice, as the
former has to buy a lot of resources to handle the volume of incoming requests, and
the latter has to pay for the Internet traffic. Active cache solves the dilemma by using
a log applet.

We have implemented a log applet, whose FromCache method simply writes the
client IP address, the date of the access, and the HTTP request to the log object. The
applet is assured that the log object will be sent back to the server eventually. The
Java code looks like the following:
public static int FromCache�

String User HTTP Request�

String Client IP Address�

String Client Name�

int Cache File�

int New File� f

int fd � open��logapplet�log�� APPEND ONLY��

int status � lock�fd��

String date � new curtime���

log to file�fd� date� Client Name�

User HTTP Request� Client IP Address��

status � unlock�fd��

close�fd��

return���� 		 � means use the cached file

g

2.2.2 Advertising Banner Rotation
Another reason that servers disable caching is to change the presentation of the docu-
ment upon every request, for example, putting on different advertising banners. This
again conflicts with proxy caching. Active Cache solves the problem by attaching an
ad-banner-rotation applet with each document.

The applet, when invoked, first checks for the object that specifies the banners,
their positions in the document, and their frequencies of appearance. If the object is
not in cache, it sends a request to the Web server to fetch the object. The applet then
goes through the cached document, and for every image that is specially marked to
be an advertisement banner, decides which banner should be put there according to
the specifications, and changes the image URL. It then puts the new document in the
New File and returns 1.

The applet implements a simple frequency-based rotation. Other algorithms can
be implemented. The applet can record the state needed by the algorithms in the
object. It can further record in the log object the banner choices that it has made.

2.2.3 Access Permission Checking
Existing cache systems for the Internet typically provide very limited support to
access control of server contents: for example, only allowing the same user to access
the document again. Using cache applets, the server can gain the benefits of proxy
caching without sacrificing the access control.

The cache applet, upon receiving a request from the user, checks whether the user
request is accompanied with an access authorization. An access authorization is a
cookie that contains a signed statement from the server. If not, the request is sent to
the server (whose response would include a cookie for future requests if the user is
allowed to access the contents). Otherwise, using the server’s public key, the applet
verifies whether the server has signed the certificate. If so, the applet grants access
to the document. If not, the applet merely returns -1 and the request is redirected to
the server, who will send the appropriate access violation messages.

2.2.4 Client-Specific Information Distribution
Today, many information providers allow users to specify preferences of the cate-
gories of information that they would like to receive. A typical example is
my�yahoo�com, which is among the busiest sites on the Internet. The client-specific
pages currently cannot be cached at the Web proxies, increasing the load at the Web
server and the traffic on the Internet. Active cache solves the problem again by us-
ing a cache applet that constructs client-specific pages based on a database of base
documents.

We have implemented a simply cache applet for this purpose. Upon receiving the
client request, the applet first probes a database object to see if it stores the mapping
between the client ID (extracted from the cookie) and its preference. If not, it fetches
the preference from the server. After obtaining the preference, the applet composes
the Web page. For each individual information item, it first tries to read the item from
the cache, and if the item is not cached, fetch it from the server and cache it. It then
composes the page and returns it to the user.

Thus, the cache applet filters out the redundancy in the information transmitted
by the server for the client-specific pages, and allows individual information items
to be cached and reused by the proxy. For a proxy with a large client population,
the savings in network bandwidth can be significant. It also allows schemes such as
Pointcast to avoid having to write its own proxy servers, and support broadcasting
schemes such as SkyCache.

2.2.5 Server-Side Include Expansion
Similar to the ad-banner-rotation applet, the SSI applet allows expansion of Server-
Side Include (SSI) (5) variables at the proxy site, thus allowing the correct caching of
SSI-based dynamic documents. The applet scans the cached document, and for each
specially marked SSI variable, update the value of the variable in the document,
and put the new document in New File. The proxy can correctly expand variables
DATE GMT, DATE LOCAL, REMOTE ADDRESS, and REMOTE HOST. Other

SSI variables are typically related to the server and do not change from request to
request.

2.2.6 Delta Compression
Studies (8) have shown that transmitting the changes (deltas) between the new and
old versions of dynamic information can reduce network traffic significantly. Delta
compression can be easily implemented with cache applets.

We have implemented an applet that upon receiving a client request, sends a re-
quest to the original server, including the current request and the last-modified-time
of the document. After the server responds with the difference between the new doc-
ument and the cached version, the applet constructs the reply to the client request
using the diff and the cached version.

A similar cache applet can support delta compression of query responses. For
example, a query of a particular company’s stock quote can be handled by the applet,
which simply asks the server for the number and then composes the Web page based
on a cached response.

3 SECURITY MECHANISMS

In the Active Cache environment, the proxy system is particularly vulnerable to two
types of security attacks: an applet’s illegal access to information belonging to other
Web servers, and denial-of-service attacks. To guard against the first type of attacks,
we rely on a type-safe language with built-in security mechanisms, a well-defined
security interface, and static examination of the code. To guard against the second
type of attacks, we rely on user-request triggered execution of cache applets, run-
time accounting of resource consumptions, and limiting the resource consumptions.

3.1 Language-based Protection

For the language of the cache applet, we choose Java because of the large amount
of research efforts invested on Java security. Its platform-independence and built-in
security mechanisms contribute to our decision. In the Active Cache environment,
the Java security problem is simplified by the fact that the applet is used for only
one purpose: processing a user request at the proxy site and constructing a response.
Thus, the java.io libraries, the process/thread management libraries and other system-
related libraries are simply absent from the cache applet’s run-time environment to
prevent the security problems associated with their use.

The security interface of the cache applets is quite simple: all an applet can do
is to ask whether some objects exist in the cache, read and write the objects, and
communicate with the server where the applet comes from. Furthermore, accesses to
objects are restricted as described in Section 2.

The restrictions are designed with the assumption that each server is a security en-
tity, applets from the same server trust each other, and applets from different servers

do not cooperate. Thus, an applet has read access to all information in documents and
objects from the same server. However, each applet can only manipulate the objects
that it creates or is attached to. We impose this constraint for simplicity and safety.
The flexibility of the scheme is not compromised, because one applet can always be
attached to many documents.

The restrictions are enforced by two mechanisms. The ActiveProxy class imple-
ments the constraints. Java’s type safety and run-time mechanisms prevent applets
from bypassing the ActiveProxy class and gaining raw access to information and re-
sources. Recent research results have significantly improved the robustness of Java’s
run-time environments (10). Thus, we rely on the existing mechanisms to force the
applet to use the ActiveProxy class to access its objects as well as the computation
and networking resources. The ActiveProxy class is also the place where we keep
track of resources consumed by each applet.

In addition, we use static examination of the classes and functions called in the
cache applet code to prevent manipulations of Java “class” methods to circumvent
our restrictions. When the cache applet is first loaded, the proxy examines the symbol
table to check for “class” method calls and calls to unloaded packages. If the applet
cannot pass the inspection, the proxy will not cache the reply.

3.2 Resource Accounting

The proxy keeps track of an applet’s resource consumption in the following five
aspects:

� storage size, that is, the sum of sizes of objects created and written to by the
applet;

� disk bandwidth consumption, that is, the amount of file bytes read and written by
the applet;

� network bandwidth consumption, including all the bytes sent and received in the
Send HTTP Request function;

� CPU usage, including user time and system time;
� virtual memory size (an applet can exhaust kernel page table resources by allocat-

ing a large amount of virtual memory; thus, the size of the virtual address space
needs to be constrained);

Mutexes and locks are not included because each applet can only lock objects created
by it, and all locks are automatically relinquished upon termination of the applet
execution. We also do not track process-related operations because the applet cannot
spawn new threads or processes. Rather, each applet is executed in a new process
when a user request for the active object arrives.

The storage size, disk bandwidth and network bandwidth consumptions are kept
track of by the ActiveProxy class methods, since they must be called in order for the
applet to gain access to those resources. The process running the applet also sets a
one-second alarm and record the CPU time and virtual memory sizes in the alarm

handler. Limiting the CPU and virtual memory sizes is implemented by the setrlimit
system call before branching to the applet’s execution.

To prevent denial of service attacks, the proxy imposes upper-limits on all five
resources. By default, the upper limit for CPU time is proportional to the latency
of sending the request to the server and receiving the response. The virtual memory
size is proportional to the length of the response to the client request. The storage
size and disk bandwidth limit are also proportional to the response size. Finally, the
network bandwidth consumption cannot exceed the response size. The limits are
designed with the assumption that the goal of caching the documents is to reduce
network traffic. If the goal of caching is for reliability or other reasons, the limits
can be raised by the proxy. In our initial prototype, we simply use fixed constants for
these limits for ease of implementation.

4 RESOURCE MANAGEMENT POLICIES

An important design question for Active-Cache enabled proxies is the resource man-
agement policy. Essentially, the policy must make three decisions:

� should a document (with or without a cache applet) be cached?
� when a user request arrives, should the proxy invoke the applet or send the request

to the server?
� what are the upper resource limits for each applet?

The decisions are made depending on the reason for the cache applet.
There are typically two reasons why a proxy wants to cache a document or object:

to reduce outgoing network traffic, and to improve the availability of a distributed
service. When the proxy’s goal is to reduce network traffic, the proxy is willing to
cache the most-frequently requested documents or objects, even if they are from un-
trusted servers. When the proxy’s goal is to improve service availability, the proxy
often knows about the service’s importance to its users, trusts the server, and is will-
ing to invest more resource to host it.

Thus, we have two categories of applet-attached documents (in other words, ob-
jects): un-negotiated ones and negotiated ones. Un-negotiated objects are from un-
trusted servers; their primary purpose is to perform processing at the proxy site
to avoid network traffic to the server. Negotiated objects are from servers that go
through a negotiation protocol with the proxy. They receive more resources and are
cached at the proxy for as long as necessary.

Un-negotiated objects Resource management for un-negotiated objects is rela-
tively straightforward. To decide whether an object should be cached, the proxy esti-
mates the benefit and the cost of caching, and passes the information to the cache re-
placement module. A cost-aware cache replacement algorithm can be used to decide
whether an active object is cached, for example, the GreedyDual-Size algorithm (2

). The benefit of caching is calculated in terms of saved network bandwidth, esti-
mated by the size of the response to each client request. The cost of caching includes
the storage cost of the active object, the CPU cost of the applet, and the network
communication incurred by the applet in the send request to server calls. When an
active object is first loaded, all costs are assigned a default value. The cost estimates
are then adjusted every time the applet is invoked.

The proxy always attempts to invoke the cache applet if the object is cached.
However, if the CPU or the disk arm is overloaded during the execution of the applet,
the proxy terminates the execution of the applet, voids all file changes made by the
applet, relinquishes all its locks, and directs the user request to the server.

In general, the upper resource limits for un-negotiated applets should be kept pro-
portional to the size of the responses to client requests, that is, the savings in the
network bandwidth. The exact scaling factors still need investigation. As we build
more applets on top of Active Cache, we expect to gain more insight into the issue.

Negotiated objects To establish a negotiated object, a server and a proxy should
enter a protocol in which the server identifies the service, specifies the estimated
storage, networking and CPU needs of the applet, and specifies the desired duration
of caching. The proxy examines the amount of interests in the distributed service
from its users, the importance of the service and the credential of the server, in order
to decide whether to host the service. If the proxy hosts the service, it caches the
object and the applet for the specified duration, always invokes the applet upon user
requests, and imposes the resource upper limits as specified by the server.

We have not yet designed the negotiation protocol because we need more expe-
rience with applications that need it. In particular, it is not clear whether the proxy
should provide support for real-time constraints, and to what degree. Full-fledged
real-time support complicates the design of the proxy. It is possible that for most
Active cache applications that need latency guarantees (for example, distributed col-
laboration and multimedia streaming), the proxy needs only guarantee prompt exe-
cution of the cache applet upon client requests and periodic execution of the applet
(via an alarm service). We plan to evaluate various design choices as we develop
those applications.

Currently, resource management policies in Active Cache are still research top-
ics. In our current prototype, all documents are un-negotiated objects. We use the
simple LRU policy in deciding which document to cache, regardless of whether the
document has associated cache applet or not. We also impose fixed constants on the
resource consumption of all cache applets. These choices are purely for the ease of
implementation, and we plan to refine them soon.

5 PROTOTYPE IMPLEMENTATION AND PERFORMANCE

We have implemented a prototype Active Cache as an extension of the the CERN
httpd proxy (6). The original CERN httpd software offers traditional caching of Web

documents and HTTP protocol support. We have modified the daemon to recognize
the CacheApplet header, and to invoke the appropriate applet upon cache hit.

A cache-applet attached document is stored as a regular document in the CERN
proxy. The CacheApplet header is stored as part of the document. The header iden-
tifies the associated applet and archive. The CERN httpd proxy handles each user
request in a separate process. (Despite its process-forking overhead, CERN httpd
performs amazingly well compared to other sophisticated proxies (7).) The process
model significantly simplifies our implementation, because we can limit the resource
consumption of applets by using setrlimit calls prior to calling the applet. Sending
the log object back to the server is implemented via a HTTP “POST” request to the
server. If the server is unreachable, the proxy retries the transmission periodically
up to a configurable time period, after which an alert message is sent to the proxy
administrator and human intervention is required.

The prototype implements the active cache protocol and the security mechanisms
described before. If an applet does not pass the static examination, both the document
and the applet are deleted from the cache. All objects created by the applet are stored
in a special directory whose name is the applet’s URL. The implementation of the
write and lock methods limits the operations to the objects in the special directory
only. The implementation of the read method verifies that the object has the same
URL as the server URL of the applet. The Java run-time environment is set up with
the appropriate security manager.

5.1 Applet Overhead

To measure the overhead incurred by the cache applets, we use the WebStone 2.0
standard Web server benchmark (9) and compare the response times of the original
CERN httpd proxy and the Active Cache proxy with various cache applets. In each
of our Active Cache tests, we assume that all the documents are associated with the
same applet. We test the “null” applet, the user access logging applet “log,” the ad-
vertising banner rotation applet “ads,” the access permission checking applet “apc,”
the server-side include expansion applet “ssi,” and the client-specific information
distribution applet “csid.”

Though WebStone is a Web server benchmark, it can be used to test the perfor-
mance of the proxy upon cache hits of different sizes. We use the filelist.standard in
the WebStone 2.0 benchmark and create five files of size 500B, 5KB, 50KB, 500KB
and 5MB. The clients request the files with the specified frequency in filelist.standard.
The proxy machine is installed between the clients and the server. Since there are
only five files involved, once the proxy cache is warmed up, all requests are cache
hits and the test stresses the proxy system, instead of the server system. We run exper-
iments with 1, 10 and 20 WebStone clients. The experiments all last over 10 minutes
to obtain stable results. Our test platform includes SPARC 20 workstations running
Solaris 2.4 as the client and the server machines. Our proxy machine for the “null,”
“apc,” “log,” and “ssi” applets is a 99MHz Intel x86 workstation running Solaris 2.5.
Our proxy machine for the “ads” and “csid” applets is a SPARC20 running Solaris

Proxy 1 client 10 clients 20 clients

null 1.47 1.75 1.73

log 2.16 2.31 2.24

ads 1.40 2.44 3.23

apc 2.50 2.73 2.72

ssi 3.81 4.00 3.80

csid 1.06 2.04 2.23

Table 1 Ratio between the response time when the cache applet is used and the
response time under the original CERN httpd proxy.

2.6; due to a bug in the Java thread library on the Intel platform, these two applets
hang on the Intel platform. We are working on resolving the problem.

Table 1 lists the response time degradation of each applet, that is, the ratio between
the client response time when invoking the applet and the client response time under
the original CERN httpd. The “null” applet result shows that the mechanics of estab-
lishing a Java virtual machine and invoking the applet costs 47% to 75% degradation
in response time. There are a number of reasons for it, including the increase in the
process image and the corresponding increase in the forking cost, and the CPU over-
head for finding the class, finding the method, and invoking the method. The other
applets increase the client latency by a factor of 1.5 to 4.

Monitoring the proxy system using “vmstat” shows that the performance degra-
dation is mostly caused by CPU overheads. In particular, the “ads” applet and the
“ssi” applet incur CPU overhead that is proportional to the document size because
they scan the cached document. The CPU overhead appears to heavily depend on the
coding of the applet and the efficiency of Java implementations, particularly string
operations. As the speed of Java improves and as we fine-tune our applet implemen-
tation, the CPU overhead will be reduced.

The measurements show that for a proxy system to support the Active Cache
protocol and yet maintain the same throughput, its CPU resource needs to be in-
creased. Fortunately, the workload is easily parallelizable and multi-processor sys-
tems or clusters of workstations can improve the throughput significantly. In most
proxy systems today, disk arms and network connections are typically the bottle-
necks, not the CPU resources. Whether the Active Cache paradigm will change the
situation remains to be seen.

To summarize, our prototype implementation shows that Active Cache is a practi-
cal and feasible scheme to implement in proxies. It increases the CPU demands, and
in a sense, trades local CPU resources for network bandwidth savings. Given that in
today’s technology, microprocessors are typically the cheap resources, the tradeoff

is well worthwhile. We believe that the benefits of Active Cache greatly outweigh its
implementation cost, and every proxy should support the Active Cache protocol.

5.2 Internet Traffic Reduction through Active Cache

In today’s bandwidth-hungry Internet, Active Cache’s trading CPU for Internet traf-
fic reduction is well worthwhile. Companies typically spend $6,000 to $10,000 per
month for a T1 line to the Internet; a PC workstation that can function as a proxy
costs less than $2,000 today.

Compared with traditional caching, Active Cache can increase cache hit ratios
significantly. One source of the increase is the widespread use of cookies. Studies of
HTTP traces from the AT&T WorldNet Internet Service Provider (1) have revealed
that 30% of all user requests carry cookies. Traditional proxies cannot cache replies
to these requests because doing so would violate the semantics of the HTTP/1.0
protocol. As a result, they can only achieve object hit ratios around 35% and byte
hit ratios around 30%. Active Cache proxies, on the other hand, can cache replies
to requests carrying cookies with the help of server-supplied cache applets, and can
achieve object hit ratios around 55% and byte hit ratios around 41%, according to
the AT&T trace study.

Another source of the increase is the popularity of user-tailored information providers,
such as “my.yahoo.com.” These information providers allow a user to choose among
a collection of news and information items to be included in a customized Web page.
The number of items is typically less than 1000, and each item is typically less than
1KB. Active cache proxies, at the help of applets from these Web sites, can cache
the individual information items and provide the customized pages from the cache.
Since each customized page is typically over 20KB, as long as the proxy has over
100 users, the cache applets will cut more than half of the traffic to these Web sites.

Though it is difficult to perform trace-driven studies of Active Cache since most
proxy traces anonymize the URLs, existing studies do demonstrate the need and the
potential benefits of Active Cache. Given the sharp contrast in the cost of comput-
ing versus the cost of wide-area communication, Active Cache will be an integral
component of future Web caching technologies.

6 RELATED WORK

Many prior research projects influence the design of the Active Cache scheme, in
particular, mobile objects and agents. The evolution of Java as a mature language for
mobile code makes the scheme possible.

Cache applets are similar to regular browser applets and servlets[4]. Compared
with regular browser applets, cache applets have a simple, uniform security inter-
face, which greatly simplifies the security problem. Compared with servalets, cache
applets run at proxy sites as “guests” and face many resource constraints.

There are many studies on Web proxy caching. However, few have addressed the

caching of dynamic contents. Robinovich et al have proposed macro-encoded HTML
documents that are expanded at the browser site[1]. The work is similar to ours in
the sense that both try to move the work away from the server. Indeed, a cache applet
can easily implement the processing for macro-encoded documents. Compared with
macro-ended HTML, cache applets are more flexible and powerful, and can support
functions such as access control.

Finally, the principle of Active Cache is very similar to Active Networks, in that
both treat packets as objects instead of datagrams. The difference is that Active
Cache focuses on Web caching and proxies, while Active Networks focus on In-
ternet evolution and routers. Proxies typically have full-fledged operating systems
and less stringent performance requirements than routers, making Active Cache a
somewhat easier research problem.

7 CONCLUSION AND FUTURE WORK

We propose the Active Cache protocol to support caching of dynamic documents on
the Web. We have described the motivation behind the protocol, its design, interface,
security mechanisms and resource management strategies. Using examples, we illus-
trate the flexibility and the potential of the scheme. Using prototype implementation
and WebStone-based performance measurement, we show that cache applets typi-
cally increase the client latency by a factor of 1.5 to 4, and the degradation is mainly
due to CPU overhead.

Much future work remains. We are currently extending Active Cache to support
caching continuous media in the proxies. In particular, we are investigating cache
applet implementations of RTSP, a protocol for transmitting continuous media on
the Web. We are also extending Active Cache to support the notification protocol
NTSP and its applications. Another important area that we are currently working
on is resource management policies in Active Cache proxies. We are investigating
appropriate resource limits and negotiation protocols, and the performance of cost-
aware cache replacement algorithms. Finally, we are investigating ways to optimize
Active Cache implementations and cache applets.

REFERENCES

[1] Ramon Caceres, Fred Douglis, Anja Feldmann, Gideon Glass, and Michael
Rabinovich. Web proxy caching: The devil is in the details. In Proceedings
of 1998 SIGMETRICS Internet Server Performance Workshop, June 1998.
http://www.research.att.com/ misha/.

[2] Pei Cao and Sandy Irani. Cost-aware WWW proxy caching algorithms. In
Proceedings of the 1997 USENIX Symposium on Internet Technology and
Systems, December 1997.

[3] National Lab for Applied Network Research. Icp working group.

http://ircache.nlanr.net/Cache/ICP/, 1998.
[4] Javasoft Inc. Java applets, servlets and the jar guide.

http://www.javasoft.com/products/, 1997.
[5] Netscape Inc. Generating dynamic html documents.

http://www.netscapeworld.com/nw-05-1997/nw-05-clue.html, 1997.
[6] A. Luotonen, H. Frystyk, and T. Berners-Lee. CERN HTTPD public domain

full-featured hypertext/proxy server with caching. Technical report, Avail-
able from http://www.w3.org/hypertext/WWW/ Daemon/Status.html, 1994.

[7] Carlos Maltzahn, Kathy Richardson, and Dirk Grunwald. Performance issues
of enterprise level web proxies. In Proceedings of the 1997 ACM SIGMET-
RICS International Conference on Measurement and Modelling of Computer
Systems, pages 13–23, June 1997.

[8] Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Balachander Krish-
namurthy. Potential benefits of delta encoding and data compression for
http. In Proceedings of ACM SIGCOMM’97, August 1997. Available from
http://www.research.att.com/ douglis/.

[9] Gene Trent and Mark Sake. WebSTONE: The first generation in HTTP
server benchmarking. Technical report, MTS, Silicon Graphics Inc.,
February 1995. available from http://www-europe.sgi.com/TEXT/ Prod-
ucts/WebFORCE/WebStone/paper.html.

[10] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W Felten. Extensible
security architecture for java. In The 16th Symposium on Operating System
Principles, May 1997.

8 BIOGRAPHY

Jin Zhang received his bachelor degree of Computer Science in 1992 from Tianjin
University, PRC. He received his Master’s degree of Computer Science in 1995 from
Tsinghua University, PRC. Currently he is a graduate student of Computer Science
Department of University of Wisconsin-Madison. He joined the WisWeb group and
worked with Professor Pei Cao since Sept. 1997. His main project is ActiveCache.

Pei Cao received her Ph.D. degree from Princeton University in 1995 and is cur-
rently Assistant Professor of Computer Science at University of Wisconsin-Madison.
Her research interests are in World-Wide Web, operating systems and computer ar-
chitecture. She currently leads the WisWeb research project which focuses on various
aspects of Web caching. She is a member of the IEEE Computer Society Task Force
on Internetworking.

Kevin Beach received his bachelor degree of Mechanical Engineering in 1997
from Rutgers University, USA. He is now a graduate student at Computer Science
Department of University of Wisconsin-Madison. He joined the WisWeb research
group in January 1998. His current project is Multimedia over Active Cache.

