
 1

Secure Group Communication for First Responders

C. Edward Chow and Ganesh Godavari

Department of Computer Science

University of Colorado at Colorado springs
1420 Austin Bluffs Parkway

Colorado springs, CO 80933-7150
USA

Email: {gkgodava, chow}@cs.uccs.edu

Abstract

In this paper, we present the design and implementation of
a secure groupware for first responders, called SGFR, that
is capable of secure group chat, remote file download and
remote display control. It integrated Jabber instant
messaging system and Keystone group rekeying system.
Users are authenticated through the use of digital
certificates. Group key are issued when members are
joined or leaves to ensure the security policy. The
performance of SGFR is also presented. The system was
first developed on Linux PC then ported to an IPaq PDA
running Linux as a secure information delivery platform.

1. Introduction

In these days of terrorism threats, the ability of first
responders like firemen and emergency technicians to be
able to reach the site of an accident or attack early is
essential. The ability to co-ordinate first responders who
are coming to help at a site would improve response times
and also efficient utilization of resources. An important
consideration of such communication is security. It is
possible for terrorists and malicious elements to eavesdrop
on first responder communication and use it for further
destruction. One possibility could be to use the
movements of emergency responders to plan further
attacks so that they could be targeted. Hence there is a
need to use security in order to mask the communication
between first responders.

The general objective of Secure Communication is an
attempt to create a framework for secure Group
Communication. SGFR uses Instant Messaging platform
for communication between various clients. In addition to
text chatting, SGFR provides file transfer and remote
display.
__
1 This work is based on research sponsored by the Air Force
Research Laboratory, under agreement number F49620-03-1-
0207. The view and conclusions contained herein are those of the
authors and should not be interpreted as necessarily represented
the official policies or endorsements, either expressed or implied,
of the Air Force Research Laboratories or the U.S. Government.
It is sponsored by a NISSC Summer 2003 grant.

2. Related work
Secure group communications has been a hot topic for

research in the recent years. There has been some work
done by Lawrence Berkeley research Labs (LBL) in
building a reliable multicast transport protocol (RMTP) [1]
similar to TCP as ip multicast is unreliable in a peer to
peer model.

Specifying policy framework for secure group
communication has been studied by the Antigone [2]
project at University of Michigan.

3. Instant Messaging (IM)

IM uses Internet technology to allow people to send
text messages that are delivered in real time. One needs to
download instant messaging software and install it on
his/her computer. After the software is installed and
you've registered a unique name with the IM service
provider, you log into a central server that indicates that
you are available. The messages are sent either through the
service’s central server or, directly from one computer to
another using peer-to-peer technology. There are a number
of instant messaging services like AOL [3], Yahoo [4],
and MSN [5] which are widely used by people. One of the
Major problems between these various IM’s is
interoperability. AOL users can’t talk to MSN, and MSN
users can’t talk to Yahoo. If you want to use IM to
communicate with someone, they must have the same
service.

Currently Two groups within the Internet Engineering
Task Force (IETF) are actively working to make
interoperability between the various instant messengers, a
reality by defining a common protocol for IM: the
Extensible Messaging and Presence Protocol (XMPP)
Working Group and the SIP for Instant Messaging and
Presence Leveraging Extensions (SIMPLE) Working
Group.

3.1 Jabber - Open Source IM service

Jabber is an open XML protocol for the real-time
exchange of messages and presence between any two
points on the Internet [6]. It’s based on the XMPP
protocol. The first application of Jabber technology is an
asynchronous, extensible instant messaging platform,

 2

along with an IM network that offers functionality similar
to legacy IM systems such as AIM, ICQ, MSN, and
Yahoo. Jabber uses client-server architecture, not a direct
peer-to-peer architecture. This means that all Jabber data
sent from one client to another must pass through at least
one Jabber server. Jabber clients are free to negotiate
direct connections, for example to transfer files, but those
"out-of-band" connections are first negotiated within the
context of the client-server framework. XML is an integral
part of the Jabber architecture because it is of utmost
importance that the architecture be fundamentally
extensible and able to express almost any structured data.
When a client connects to a server, it opens a one-way
XML stream from the client to the server, and the server
responds with a one-way XML stream from the server to
the client. Thus each session involves two XML streams.

The Jabber server plays three primary roles:
§ Handling client connections and communicating directly

with Jabber clients.
§ Communicating with other Jabber servers.
§ Coordinating the various server components associated

with the server.
The only things a Jabber client must do are:

§ Communicate with the Jabber server over TCP sockets.
§ Parse and interpret well-formed XML "chunks" over an

XML stream.
§ Understand the core Jabber data types (message,

presence, and iq…).
There are a number of Jabber IM clients that run on

various operating systems. A list of the Jabber IM client is
available at http://www.jabber.org/.

JabberX [7] is a console-mode client for the Jabber
instant-messaging IM platform. With JabberX, you can
send and receive messages, browse and use Jabber
services, participate in Jabber groupchats and search
Jabber user directories.

4. Group Communication and Group

Key Management
Group Communication can be explained as

“Communication between two or more people, with a
common goal, in which every person can participate with
other members”. Group communication is a critical area
that currently inspires a lot of research. One of the major
aspects of group communication is security. Network
based applications like online stock markets and
command-and-control systems use group
Communications. Internet Research Task force has formed
a Group Security (GSEC) [8] to identify problems related
to Group communication

A group key management Server establishes and
maintains group keys for groups of clients. Keystone [9]
uses key graph technique to manage keys, thereby
providing a scalable group key management scheme. A
key graph is a directed a-cyclic graph with 2 kinds of

nodes, u-nodes representing users and k-keys representing
keys.

Keystone has the following components
§ "keyserver0" is a key server program with embedded

registrar.
§ "keyserver" is a key server program without

embedded registrar.
§ "registrar" is a registrar program.
§ "specwriter" is a specification writer program.
§ "libks.a" is a library for client control functions

Figure 4.1 shows the architectural overview of
Keystone. For the clients to register with the keyserver the
authentication protocol used is SSL/TLS [10]. The
keyserver can provide access control using certificates.
Once the client is authenticated, the keyserver generates
the client's individual key, which is used to protect further
communications between them. As the keyserver can
become a bottleneck, keystone provides one or more
registrars. Different registrars may use different
authentication services to authenticate different set of
clients at the same time.

The control manager of a client is responsible for
client control functions i.e. sending requests and
processing rekey messages. Each client has a data
processor, which is not a part of the keystone. The key
server processes requests from client, changes keys and
distributes new keys to client using the rekey messages
using unicast or multicast.

5. SGFR Design and Analysis

SGFR integrates JabberX with Keystone and Jabber
Server and provides secure group communication between
various JabberX clients using the keystone. It provides
facilities like secure group chatting, file transfer and
remote display.

The Design of SGFR is taken to fit in using the
Keystone architecture, yet providing an independent
framework for secure Instant Messaging platform. The
figure shows how the JabberX client interacts with the
control manager and Jabber server for authentication the
JabberX client sends the data to the conference module of
the Jabber Server which broadcasts data to various
JabberX clients.

Association of the JabberX client with the Keyserver
with Jabber server follows the following rules:

1) User logs into the Jabber server
2) If login successful, the client registers with the

Keyserver.
3) On joining/beginning of a group conference the

Keyserver gives a key to the client.
4) On leaving the group the keyserver generates a key

for the remainder of group that is different from the
earlier one.

 3

The messages displayed in Figure 5.1 is because we
are not connected to the outside world so its not able to
contact jabber server for updates. if we look into the error
message it shows that its trying to contact jabber.org

Figure 5.2 shows the output produced by the keystone
when two JabberX clients joined the group. The data
enclosed in the red box shows the key generated when
each client joined in the group.

The data sent to the group is encrypted using blowfish
[11]. The message is sent out as a normal message to
jabber server. Upon receiving the message the client tries
to decrypt the key using the group key given by the
keyserver. If decryption fails message is ignored. Figure
5.4 shows the packet sent between client and server
captured using ethereal []

User “ganesh” joined an existing conference started
by user “ayen”. So he cannot read what has taken place in
the group before he joined the conference.

5.1 File Transfer and Remote Display

One of the client can send a file to all other clients in
the group. Once the File transfer is complete it will be
automatically displayed on the all the groups web browser.
The reason for choosing a web browser is its inherent
ability to display/open various applications depending on
the type of the file. As the Jabber clients are free to
negotiate direct connections for transferring files within
the context of the client-server framework. In a group
communication if all the clients try to establish a peer-to-
peer connection with the sender of the file, the sender of
the file can become overloaded. Moreover first responders
like fire fighters cannot be envisioned to carry heavy
equipment like laptops.

We decided to send file as normal group chat message
but with a message type of ‘filetransfer’. The client on
receiving the message interprets the message as a ‘file
transfer’ rather than ‘group chat’ message. One of the
draw back with this approach is conference module of the
Jabber Server is not optimized to receive a lot of big
chunks of messages.

We have successfully ported JabberX client onto
IPAQ PDA running Linux. One of the problems faced is
formatting of data on screen. JabberX uses ‘iconv’ which
is a part of the glibc for formatting of messages into UTF-
8. The older version of glibc libraries has a bug in iconv.
So the iconv libraries had been updated but the problem
persists. We had to display stuff in UTF-8 format instead
of any other local format set using the LANG environment
variable.

6. SGFR Testing Results

We have tested the time taken for client registration,
group join and group leaving. Table 6.1 shows that on

average the time for client registration is 0.2 sec, join a
group 0.42 sec, and leave a group is 0.36 sec.

We have tested the time taken for file transfer. Table
6.2 shows that on average time taken for each kilobyte of
file transfer is 5043.92 (ms). The reason for this poor
performance is because conference module of the jabber
server is not designed for handling large chunks of data.

7. Lessons learned

One of the critical goal of this project is to provide a
framework for a secure group communication using the
existing tools for instant messaging server like Jabber, key
server management like Keystone and instant messaging
clients like JabberX.

Getting these various tools and their dependencies to
work with each other was a great learning experience.
Some of the problems faced were

1) Cryptolib -1.2 [12] is a part of keystone key

management system. work on Cryptolib libraries were
stopped way back in 1995. Cryptolib libraries has no
problem running on Solaris but it has a problem
running on Linux as multiple jumps to the same
location between function call is overridden on Linux.

2) Remove the conflict between the Keystone client
library and P-thread library caused by redefinition
of variables constants.

3) Remove the conflict between function declaration of
Cryptolib and OpenSSL caused by md2, md4 and
md5.

4) Porting the JabberX client onto ipaq PDA caused a lot
of problems of formatting data onto screen. The
problem was solved when we upgraded the iconv
libraries and setting the ‘LANG’ environment variable
to UTF-8 encoding.

8. Conclusion and Future work

The goal of SGFR was to work on creating a
framework for secure group communication for Instant
Messaging using group communication tools like
Keystone, Jabber server and Jabber client. We need to
extend the work by improving the file transfer capability
using Reliable Multicast Transport Protocol.

We are also working on implementing wireless ad-
hoc mode of communication between various client
devices. Thereby improving the range of communication
between various client devices like PDAs, palmtops etc.

We are also working on improving keystone’s error
handling mechanism between keyserver/registrar and
client manager. We are also focusing on improving
keystone client manager by moving it into socket layer and
providing socket layer API between a client manager and
data processor.

 4

9. References
[1] Reliable and secure group communication

http://www-itg.lbl.gov/CIF/GroupComm/
[2] Antigone, policy definition and analyzer for group

communication
http://antigone.eecs.umich.edu/content/antigone-
2.0.12/docs/html/index.html

[3] America on Line. Instant Messenger ™ of AOL
http://www.aol.com/

[4] Yahoo ™ Instant Messenger of Yahoo
http://www.yahoo.com/

[5] MSN ™ Instant Messenger of Microsoft
 http:// msn.com/
[6] Jabber Software Foundation http://www.jabber.org/
[7] JabberX, Jabber client http://jabberx.jabberstudio.org/

[8] IRTF research group, Group security (GSEC)
http://www.irtf.org/charters/gsec.html

[9] Chung Kei Wong and Simon S. Lam “Keystone: A
Group Key Management Service” Proceedings
International Conference on Telecommunications,
May 2000

[10] RFC2246 - "The TLS Protocol Version 1.0"
ftp://ftp.isi.edu/in-notes/rfc2246.txt

[11] blowfish encryption algorithm
http://www.schneier.com/blowfish.html

[12] J. Lancy, D. Mitchell, and M Blaze. Cryptolib-1.2
http://www.homeport.org/adam/crypto/cryptolib.phtm
l

[13] http://www.ethereal.com/

Figure 4.1 architectural overview of Keystone

Figure 5.1 shows the interaction between various components

 5

Figure 5.2 shows the output of the Jabber server running on a machine

Figure 5.3 shows the output of the Keystone

Figure 5.4 shows the encryption of the message from client to server.

 6

Figure 5.5 shows the chatting between 2 clients

Runs Client Registration time
(ms)

group join time (ms) group leave time (ms)

1 279.62 233.46 135.54
2 249.28 652.74 126.78
3 253.93 706.04 769.08
4 259.46 118.15 434.12
Avg/Run 260.5725 427.5975 366.38

Table 6.1 time taken for client registration group join, group leave

File size Time Taken (ms)
8.5K 35302.47
25K 105986.05
60K 305934.53
195K 1007949.38

Table 6.2 time taken for file transfer

 7

Figure 5.6 shows the message between 2 clients during file transfer

