
Secure Group Communications Using Key Graphs�

Chung Kei Wong Mohamed Gouda Simon S� Lam

Department of Computer Sciences

University of Texas at Austin

Austin� TX ����������

fckwong�gouda�lamg�cs�utexas�edu

Abstract

Many emerging applications �e�g�� teleconference� real�time
information services� pay per view� distributed interactive
simulation� and collaborative work� are based upon a group
communications model� i�e�� they require packet delivery
from one or more authorized senders to a very large number
of authorized receivers� As a result� securing group commu�
nications �i�e�� providing con�dentiality� integrity� and au�
thenticity of messages delivered between group members�
will become a critical networking issue�

In this paper� we present a novel solution to the scal�
ability problem of group�multicast key management� We
formalize the notion of a secure group as a triple �U�K�R�
where U denotes a set of users� K a set of keys held by the
users� and R a user�key relation� We then introduce key
graphs to specify secure groups� For a special class of key
graphs� we present three strategies for securely distribut�
ing rekey messages after a join�leave� and specify protocols
for joining and leaving a secure group� The rekeying strate�
gies and join�leave protocols are implemented in a prototype
group key server we have built� We present measurement
results from experiments and discuss performance compar�
isons� We show that our group key management service� us�
ing any of the three rekeying strategies� is scalable to large
groups with frequent joins and leaves� In particular� the
average measured processing time per join�leave increases
linearly with the logarithm of group size�

� Introduction

Most network applications are based upon the client�server
paradigm and make use of unicast �or point�to�point� packet
delivery� Many emerging applications �e�g�� teleconference�
real�time information services� pay per view� distributed in�
teractive simulation� and collaborative work�� on the other
hand� are based upon a group communications model� That
is� they require packet delivery from one or more authorized
sender�s� to a large number of authorized receivers� In the
Internet� multicast has been used successfully to provide an

�Research sponsored in part by Texas Advanced Research Pro�
gram grant no� ���������� and by NSA INFOSEC University Re�
search Program grant no� MDA ��	��	�C��
��� Experiments were
performed on equipment procured with National Science Foundation
grant no� CDA����	����

To appear in Proceedings of ACM SIGCOMM ���� Septem�
ber ��	� 
���� Vancouver� Canada�

e
cient� best�e�ort delivery service to large groups ���� We
envision that deployment of network applications requiring
group communications will accelerate in coming years�

While the technical issues of securing unicast commu�
nications for client�server computing are fairly well under�
stood� the technical issues of securing group communications
are not� Yet group communications have a much greater ex�
posure to security breaches than unicast communications� In
particular� copies of a group communication packet traverse
many more links than those of a unicast packet� thereby cre�
ating more opportunity for tra
c interception� We believe
that securing group communications �i�e�� providing con��
dentiality� integrity� and authenticity of messages delivered
between group members� will become a critical issue of net�
working in the near future�

Conceptually� since every point�to�multipoint communi�
cation can be represented as a set of point�to�point commu�
nications� the current technology base for securing unicast
communications can be extended in a straightforward man�
ner to secure group communications ��� 
��� However� such
an extension is not scalable to large groups�

For a more concrete illustration of this point� we outline
a typical procedure for securing unicast communications be�
tween a client and a server� Initially� the client and server
mutually authenticate each other using an authentication
protocol or service� subsequently� a symmetric key is cre�
ated and shared by them to be used for pairwise con�den�
tial communications �	� 
�� 
�� ���� This procedure can be
extended to a group as follows� Let there be a trusted group
server which is given membership information to exercise
group access control� When a client wants to join the group�
the client and group server mutually authenticate using an
authentication protocol� Having been authenticated and ac�
cepted into the group� each member shares with the group
server a key�� to be called the member�s individual key� For
group communications� the group server distributes to each
member a group key to be shared by all members of the
group��

For a group of n members� distributing the group key
securely to all members requires n messages encrypted with
individual keys �a computation cost proportional to group
size n�� Each such message may be sent separately via uni�
cast� Alternatively� the n messages may be sent as a com�
bined message to all group members via multicast� Either
way� there is a communication cost proportional to group

�In this paper� key means a key from a symmetric cryptosystem�
such as DES� unless explicitly stated otherwise�

�It is easy to see that sharing a group key enables con
dential
group communications� In addition to con
dentiality� authenticity
and integrity can be provided in group communications using stan�
dard techniques such as digital signature and message digest� We will
not elaborate upon these techniques since the focus of this paper is
key management�






size n �measured in terms of the number of messages or the
size of the combined message��

Observe that for a point�to�point session� the costs of
session establishment and key distribution are incurred just
once� at the beginning of the session� A group session� on
the other hand� may persist for a relatively long time with
members joining and leaving the session� Consequently� the
group key should be changed frequently� To achieve a high
level of security� the group key should be changed after every
join and leave so that a former group member has no access
to current communications and a new member has no access
to previous communications�

Consider a group server that creates a new group key
after every join and leave� After a join� the new group key
can be sent via unicast to the new member �encrypted with
its individual key� and via multicast to existing group mem�
bers �encrypted with the previous group key�� Thus� chang�
ing the group key securely after a join is not too much work�
After a leave� however� the previous group key can no longer
be used and the new group key must be encrypted for each
remaining group member using its individual key� Thus we
see that changing the group key securely after a leave in�
curs computation and communication costs proportional to
n� the same as initial group key distribution� That is� large
groups whose members join and leave frequently pose a scal�
ability problem�

The topic of secure group communications has been in�
vestigated �
� �� �� 
��� Also the problem of how to dis�
tribute a secret to a group of users has been addressed in
the cryptography literature ��� �� �� 
��� However� with the
exception of �
��� no one has addressed the need for frequent
key changes and the associated scalability problem for a very
large group� The approach proposed in Iolus �
�� to improve
scalability is to decompose a large group of clients into many
subgroups and employ a hierarchy of group security agents�

��� Our approach

We present in this paper a di�erent hierarchical approach to
improve scalability� Instead of a hierarchy of group security
agents� we employ a hierarchy of keys� A detailed compari�
son of our approach and the Iolus approach �
�� is given in
Section ��

We begin by formalizing the notion of a secure group as
a triple �U�K�R� where U denotes a set of users� K a set
of keys� and R � U �K a user�key relation which speci�es
keys held by each user in U � In particular� each user is given
a subset of keys which includes the user�s individual key and
a group key� We next illustrate how scalability of group key
management can be improved by organizing the keys in K
into a hierarchy and giving users additional keys�

Let there be a trusted group server responsible for group
access control and key management� In particular� the server
securely distributes keys to group members and maintains
the user�key relation�� To illustrate our approach� con�
sider the following simple example of a secure group with
nine members partitioned into three subgroups� fu�� u�� u�g�
fu�� u�� u�g� and fu�� u�� u	g� Each member is given three
keys� its individual key� a key for the entire group� and a
key for its subgroup� Suppose that u� leaves the group� the
remaining eight members form a new secure group and re�
quire a new group key� also� u� and u� form a new subgroup
and require a new subgroup key� To send the new subgroup

�In practice� such a server may be distributed or replicated to
enhance reliability and performance�

key securely to u� �u��� the server encrypts it with the indi�
vidual key of u� �u��� Subsequently� the server can send the
new group key securely to members of each subgroup by en�
crypting it with the subgroup key� Thus by giving each user
three keys instead of two� the server performs �ve encryp�
tions instead of eight� As a more general example� suppose
the number n of users is a power of d� and the keys in K
are organized as the nodes of a full and balanced d�ary tree�
When a user leaves the secure group� to distribute new keys�
the server needs to perform approximately d logd�n� encryp�
tions �rather than n � 
 encryptions��� For a large group�
say 
������� the savings can be very substantial�

��� Contributions of this paper

With a hierarchy of keys� there are many di�erent ways
to construct rekey messages and securely distribute them
to users� We investigate three rekeying strategies� user�
oriented� key�oriented and group�oriented� We design and
specify join�leave protocols based upon these rekeying stra�
tegies� For key�oriented and user�oriented rekeying� which
use multiple rekey messages per join�leave� we present a
technique for signing multiple messages with a single digital
signature operation� Compared to using one digital signa�
ture per rekey message� the technique provides a tenfold re�
duction in the average server processing time of a join�leave�

The rekeying strategies and protocols are implemented in
a prototype group key server we have built� We performed
experiments on two lightly loaded SGI Origin ��� machines�
with the server running on one and up to ��
�� clients on the
other� From measurement results� we show that our group
key management service� using any of the rekeying strategies
with a key tree� is scalable� in particular� the average server
processing time per join�leave increases linearly with the
logarithm of group size� We found that the optimal key tree
degree is around four� Group�oriented rekeying provides the
best performance of the three strategies on the server side�
but is worst of the three on the client side� User�oriented
rekeying has the best performance on the client side� but
worst on the server side�

The balance of this paper is organized as follows� In
Section �� we introduce key graphs as a method for speci�
fying secure groups� In Section �� we present protocols for
users to join and leave a secure group as well as the three
rekeying strategies� In Section 	� we present a technique for
signing multiple rekey messages using a single digital sig�
nature operation� Experiments and performance results are
presented in Section �� A comparison of our approach and
the Iolus approach is given in Section �� Our conclusions
are in Section ��

� Secure Groups

A secure group is a triple �U�K�R� where

� U is a �nite and nonempty set of users�

� K is a �nite and nonempty set of keys� and

� R is a binary relation between U and K� that
is� R � U � K� called the user�key relation of
the secure group� User u has key k if and only if
�u� k� is in R�

�A similar observation was independently made in ���� at about
the same time as when this paper was 
rst published as a technical
report ��
��

�



Each secure group has a trusted group server responsible for
generating and securely distributing keys in K to users in
the group�� Speci�cally� the group server knows the user set
U and the key set K� and maintains the user�key relation
R� Every user in U has a key in K� called its individual key�
which is shared only with the group server� and is used for
pairwise con�dential communication with the group server�
There is a group key in K� shared by the group server and
all users in U � The group key can be used by each user to
send messages to the entire group con�dentially�

��� Key graphs

A key graph is a directed acyclic graph G with two types
of nodes� u�nodes representing users and k�nodes represent�
ing keys� Each u�node has one or more outgoing edges but
no incoming edge� Each k�node has one or more incoming
edges� If a k�node has incoming edges only and no outgoing
edge� then this k�node is called a root� �A key graph can
have multiple roots��

Given a key graph G� it speci�es a secure group �U�K�R�
as follows�

i� There is a one�to�one correspondence between U
and the set of u�nodes in G�

ii� There is a one�to�one correspondence between K
and the set of k�nodes in G�

iii� �u� k� is in R if and only if G has a directed path
from the u�node that corresponds to u to the k�
node that corresponds to k�

k3

u3 u4

k4k1 k2

u1 u2

k12 k234

k1234

u-nodes

k-nodes

Figure 
� A key graph�

As an example� the key graph in Figure 
 speci�es the
following secure group�

U � fu�� u�� u�� u�g
K � fk�� k�� k�� k�� k��� k���� k����g
R � f �u�� k��� �u�� k���� �u�� k������

�u�� k��� �u�� k���� �u�� k����� �u�� k������
�u�� k��� �u�� k����� �u�� k������
�u�� k��� �u�� k����� �u�� k����� g �

Associated with each secure group �U�K�R� are two func�
tions� keyset �� and userset ��� de�ned as follows�

keyset�u� � f k j �u� k� � R g
userset�k� � f u j �u� k� � R g

Intuitively� keyset�u� is the set of keys that are held by user

�Note that individual keys may have been generated and securely
distributed by an authentication service and do not have to be gen�
erated by the group server�

u in U � and userset �k� is the set of users that hold key k
in K� For examples� referring to the key graph in Figure 
�
we have keyset�u�� � fk�� k���� k����g and userset�k���� �
fu�� u�� u�g�

We generalize the de�nition of function keyset�� to any
subset U � of U � and function userset �� to any subset K� of
K� in a straighforward manner� i�e�� keyset �U �� is the set of
keys each of which is held by at least one user in U �� and
userset�K�� is the set of users each of which holds at least
one key in K��

When a user u leaves a secure group �U�K�R�� every
key that has been held by u and shared by other users
in U should be changed� Let k be such a key� To re�
place k� the server randomly generates a new key knew and
sends it to every user in userset�k� except u� To do so se�
curely� the server needs to �nd a subset K� of keys such
that userset �K�� � userset�k� � fug� and use keys in K�

to encrypt knew� To minimize the work of rekeying� the
server would like to �nd a minimal size set K�� This sug�
gests the following key�covering problem� Given a secure
group �U�K�R�� and a subset S of U � �nd a minimum size
subset K� of K such that userset�K�� � S� Unfortunately�
the key�covering problem in general is NP�hard ��
��

��� Special classes of key graphs

We next consider key graphs with special structures for
which the key covering problem can be easily solved�

Star� This is the special class of a secure group �U�K�R�
where each user in U has two keys� its individual key and a
group key that is shared by every user in U ��

Tree� This is the special class of a secure group �U�K�R�
whose key graph G is a single�root tree� A tree key graph
�or key tree� is speci�ed by two parameters�

� The height h of the tree is the length �in number
of edges� of the longest directed path in the tree�

� The degree d of the tree is the maximum number
of incoming edges of a node in the tree�

Note that since the leaf node of each path is a u�node� each
user in U has at most h keys� Also the key at the root of the
tree is shared by every user in U � and serves as the group
key� Lastly� it is easy to see that star is a special case of
tree�

Complete� This is the special class of a secure group
�U�K�R�� where for every nonempty subset S of U � there
is a key k in K such that userset�k� � S� Let n be the
number of users in U � There are �n � 
 keys in K� one for
each of the �n � 
 nonempty subsets of U � Moreover� each
user u in U has �n�� keys� one for each of the �n�� subsets
of U that contains u� Since U is a subset of U � there is a key
shared by every user in U which serves as the group key�

The total number of keys held by the server and the
number of keys held by a user are presented in Table 
 where
n is the size of U � In particular� in the case of a complete key
graph� each user needs to hold �n�� keys which is practical
only for small n� Note that the number of keys in a key

tree is dh��
d��

� d
d��

n when the tree is full and balanced �i�e�

n � dh����

�This is the base case where no additional keys are used to improve
scalability of group key management�

�



Class of key graph Star Tree Complete
Total number of keys n�
 d

d��
n �n�


Number of keys per user � h �n��

Table 
� Number of keys held by the server and by each
user�

� Rekeying Strategies and Protocols

A user u who wants to join �leave� a secure group sends a join
�leave� request to the group server� denoted by s� For a join
request from user u� we assume that group access control is
performed by server s using an access control list provided by
the initiator of the secure group�� A join request initiates an
authentication exchange between u and s� possibly with the
help of an authentication server� If user u is not authorized
to join the group� server s sends a join�denied reply to u�
If the join request is granted� we assume that the session
key distributed as a result of the authentication exchange
�
�� ��� will be used as the individual key ku of u� To simplify
protocol speci�cations below� we use the following notation

s� u � authenticate u and distribute ku

to represent the authentication exchange between server s
and user u� and secure distribution of key ku to be shared
by u and s�

After each join or leave� a new secure group is formed�
Server s has to update the group�s key graph by replacing
the keys of some existing k�nodes� deleting some k�nodes �in
the case of a leave�� and adding some k�nodes �in the case
of a join�� It then securely sends rekey messages containing
new group�subgroup keys to users of the new secure group�
�A reliable message delivery system� for both unicast and
multicast� is assumed�� In protocol speci�cations below� we
also use the following notation

x� y � z

to denote

� if y is a single user� the sending of message z from
x to y�

� if y is a set of users� the sending of message z from
x to every user in y �via multicast or unicast��

In the following subsections� we �rst present protocols for
joining and leaving a secure group speci�ed by a star key
graph� These protocols correspond to conventional rekey�
ing procedures informally described in the Introduction ���

��� We then consider secure groups speci�ed by tree key
graphs� With a hierarchy of group and subgroup keys� rekey�
ing after a join�leave can be carried out in a variety of
ways� We present three rekeying strategies� user�oriented�
key�oriented� and group�oriented� as well as protocols for
joining and leaving a secure group�

��� Joining a star key graph

After granting a join request from user u� server s updates
the key graph by creating a new u�node for u and a new
k�node for ku� and attaching them to the root node� Server

�The authorization function may be o�oaded to an authorization
server� In this case� the authorization server provides an authorized
user with a ticket to join the secure group �
�� ���� The user submits
the ticket together with its join request to server s�

s also generates a new group key kU� for the root node�
encrypts it with the individual key ku of user u� and sends
the encrypted new group key to u� To notify other users
of the new group key� server s encrypts the new group key
kU� with the old group key kU � and then multicasts the
encrypted new group key to every user in the group� �See
Figure ���

�
� u� s � join request
��� s� u � authenticate u and distribute ku
��� s � randomly generate a new group key kU�
�	� s� u � fkU�gku
��� s� U � fkU�gkU

Figure �� Join protocol for a star key graph�

k1 k2

u1 u2

k3

u3

k123

����
����
����
����
����

����
����
����
����
����

k1 k2

u1 u2 u4

k4k3

u3

1234k

���
���
���
���
���
���

���
���
���
���
���
���

u4 joins

u4 leaves

Figure �� Star key graphs before and after a join �leave��

For example� as shown in Figure �� suppose user u� wants
to join the left secure group in the �gure� and it is allowed
to join� After server s changes the group key from k��� to a
new key k����� server s needs to send out the following two
rekey messages�

s� fu�� u�� u�g � fk����gk���
s� u� � fk����gk�

For clarity of presentation� we have assumed that rekey
messages contain new keys only and secure distribution
means that the new keys are encrypted just for con�den�
tiality� In our prototype implementation� rekey messages
have additional �elds� such as� subgroup labels for new keys�
server digital signature� message integrity check� timestamp�
etc� �See ��
� for rekey message format��

��� Leaving a star key graph

�
� u� s � f leave�request gku
��� s� u � f leave�granted gku
��� s � randomly generate a new group key kU�
�	� for each user v in U except user u do

s� v � fkU�gkv

Figure 	� Leave protocol for a star key graph�

After granting a leave request from user u� server s up�
dates the key graph by deleting the u�node for user u and
the k�node for its individual key ku from the key graph�
Server s generates a new group key kU� for the new secure
group without u� encrypts it with the individual key of each
remaining user� and unicasts the encrypted new group key
to the user� �See Figure 	��

	



���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

1-9

k-node x

k123 k456 k789

2k1 k k4 k5 k6 k7 k8 k9

u9u8u7u6u5u4u3u2u1

k

k-node x 1

0

3k

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

leaves9 u 9u joins

1-8

k-node x

k123 k456 k78

2k1 k k4 k5 k6 k7 k8

u8u7u6u5u4u3u2u1

k

k-node x 1

0

3k

Figure �� Key trees before and after a join �leave��

��� Joining a tree key graph

After granting a join request from u� server s creates a new
u�node for user u and a new k�node for its individual key ku�
Server s �nds an existing k�node �called the joining point for
this join request� in the key tree and attaches k�node ku to
the joining point as its child�

To prevent the joining user from accessing past commu�
nications� all keys along the path from the joining point to
the root node need to be changed� After generating new
keys for these nodes� server s needs to securely distribute
them to the existing users as well as the joining user� For
example� as shown in Figure �� suppose u	 is granted to
join the upper key graph in the �gure� The joining point is
k�node k�� in the key graph� and the key of this k�node is
changed to k��	 in the new key graph below� Moreover� the
group key at the root is changed from k��� to k��	� Users
u�� � � � � u� only need the new group key k��	� while users
u�� u�� and u	 need the new group key k��	 as well as the
new key k��	 to be shared by them�

To securely distribute the new keys to the users� the
server constructs and sends rekey messages to the users� A
rekey message contains one or more encrypted new key�s��
and a user needs to decrypt it with appropriate keys in or�
der to get the new keys� We next present three di�erent
approaches to construct and send rekey messages�

User�oriented rekeying� Consider each user and the subset
of new keys it needs� The idea of user�oriented rekeying
is that for each user� the server constructs a rekey message
that contains precisely the new keys needed by the user� and
encrypts them using a key held by the user�

For example� as shown in Figure �� for user u	 to join
the upper secure group in the �gure� server s needs to send

the following three rekey messages�
s� fu�� � � � � u�g � fk��	gk���

s� fu�� u�g � fk��	� k��	gk��
s� u	 � fk��	� k��	gk	

Note that users u�� � � � � u� need to get the new group key
k��	� There is no single key that is shared only by u�� � � � � u��
However� key k��� can be used to encrypt the new key k��	

for u�� � � � � u� without security breach since users u� and u�
will also get this new group key from another rekey message�

User�oriented rekey messages can be constructed as fol�
lows� For each k�node x whose key has been changed� say
from k to k�� the server constructs a rekey message by en�
crypting the new keys of k�node x and all its ancestors �upto
the root� by the old key k� This rekey message is then sent
to the subset of users that need precisely these new keys� Ei�
ther unicast or subgroup multicast may be used�� Moreover�
one rekey message is sent to the joining user which contains
all of the new keys encrypted by the individual key of the
joining user�

This approach needs h rekey messages� Counting the
number of keys encrypted� the encryption cost for the server
is given by


 � � � � � �� h� 
 � h� 
 � h
h���

�
� 
�

Key�oriented rekeying� In this approach� each new key is
encrypted individually �except keys for the joining user��
For each k�node x whose key has been changed� say from k
to k�� the server constructs two rekey messages� First� the
server encrypts the new key k� with the old key k� and sends
it to userset �k� which is the set of users that share k� All of
the original users that need the new key k� can get it from
this rekey message� The other rekey message contains the
new key k� encrypted by the individual key of the joining
user� and is sent to the joining user�

As described� a user may have to get multiple rekey mes�
sages in order to get all the new keys it needs� For example�
as shown in Figure �� for user u	 to join the upper secure
group in the �gure� server s needs to send the following four
rekey messages� Note that users u�� u�� and u	 need to get
two rekey messages each�

s� fu�� � � � � u�g � fk��	gk���

s� u	 � fk��	gk	
s� fu�� u�g � fk��	gk��
s� u	 � fk��	gk	

Compared to user�oriented rekeying� the above approach

reduces the encryption cost of the server from h
h���

�
�
 to

��h�
�� but it requires ��h�
� rekey messages instead of h�
To reduce the number of rekey messages� all of the rekey

messages for a particular user can be combined and sent as
one message� Thus� server s can send the following three
rekey messages instead of the four rekey messages shown
above�

s� fu�� � � � � u�g � fk��	gk���

s� fu�� u�g � fk��	gk���
� fk��	gk��

s� u	 � fk��	� k��	gk	
The join protocol based upon this rekeying strategy is

presented in Figure �� Steps �	� and ��� in Figure � spec�
ify how the combined rekey messages are constructed and
distributed by server s�

Using combined rekey messages� the number of rekey
messages for key�oriented rekeying is h �same as user�

�A rekey message can be sent via multicast to a subgroup if a
multicast address has been established for the subgroup in addition to
the multicast address for the entire group� Alternatively� the method
in �
�� may be used in lieu of allocating a large number of multicast
addresses for subgroups� See Section � for more discussion�

�



oriented rekeying� while the encryption cost is ��h � 
��
From this analysis� key�oriented rekeying is clearly better
for the server than user�oriented rekeying� �This conclusion
is con�rmed by measurement results presented in Section ���

�
� u� s � join request
��� s� u � authenticate u and distribute ku
��� s � �nd a joining point and attach ku�

let xj denote the joining point� x
 the root�
and xi�� the parent of xi for i � 
� � � � � j�

let Kj�� denote ku�
and K
� � � � � Kj the old keys of x
� � � � � xj �

randomly generate new keys K�


� � � � � K
�

j

�	� for i � � upto j do
let M � fK�


gK

� � � � � fK�

igKi

s� �userset �Ki�� userset �Ki���� � M
��� s� u � fK�


� � � � � K
�

jgku

Figure �� Join protocol for a tree key graph �key�oriented
rekeying��

Group�oriented rekeying� In key�oriented rekeying� each
new key is encrypted individually �except keys for the join�
ing user�� The server constructs multiple rekey messages�
each tailored to the needs of a subgroup� Speci�cally� the
users of a subgroup receive a rekey message containing pre�
cisely the new keys each needs�

An alternative approach� called group�oriented� is for the
server to construct a single rekey message containing all new
keys� This rekey message is then multicasted to the en�
tire group� Clearly such a rekey message is relatively large
and contains information not needed by individual users�
However� scalability is not a concern because the message
size is O�logd�n�� for group size n and key tree degree d�
The group�oriented approach has several advantages over
key�oriented and user�oriented rekeying� First� there is no
need for subgroup multicast� Second� with fewer rekey mes�
sages� the server�s per rekey message overheads are reduced�
Third� the total number of bytes transmitted by the server
per join�leave request is less than those of key�oriented and
user�oriented rekeying which duplicate information in rekey
messages� �See Section � and Section � for a more thorough
discussion on performance comparisons��

For example� as shown in Figure �� for user u	 to join
the upper secure group in the �gure� server s needs to send
the following two rekey messages� one is multicasted to the
group� and the other is unicasted to the joining user�

s� fu�� � � � � u�g � fk��	gk���
� fk��	gk��

s� u	 � fk��	� k��	gk	
The join protocol based upon group�oriented rekeying is

presented in Figure �� This approach reduces the number
of rekey messages to one multicast message and one unicast
message� while maintaining the encryption cost at ��h� 
�
�same as key�oriented rekeying��

�
� � ��� �same as Figure ��
�	� s� userset�K
� � fK

�


gK

� � � � � fK�

jgKj

��� s� u � fK�


� � � � � K
�

jgku

Figure �� Join protocol for a tree key graph �group�oriented
rekeying��

��� Leaving a tree key graph

After granting a leave request from user u� server s updates
the key graph by deleting the u�node for user u and the k�
node for its individual key from the key graph� The parent
of the k�node for its individual key is called the leaving point�

To prevent the leaving user from accessing future com�
munications� all keys along the path from the leaving point
to the root node need to be changed� After generating new
keys for these k�nodes� server s needs to securely distribute
them to the remaining users� For example� as shown in Fig�
ure �� suppose u	 is granted to leave the lower key graph in
the �gure� The leaving point is the k�node for k��	 in the
key graph� and the key of this k�node is changed to k�� in
the new key graph above� Moreover� the group key is also
changed from k��	 to k���� Users u�� � � � � u� only need to
know the new group key k���� Users u� and u� need to
know the new group key k��� and the new key k�� shared
by them�

To securely distribute the new keys to users after a leave�
we revisit the three rekeying strategies�

User�oriented rekeying In this approach� each user gets a
rekey message in which all the new keys it needs are en�
crypted using a key it holds� For example� as shown in
Figure �� for user u	 to leave the lower secure group in the
�gure� server s needs to send the following four rekey mes�
sages�

s� fu�� u�� u�g � fk���gk���
s� fu�� u�� u�g � fk���gk���
s� u� � fk���� k��gk�
s� u� � fk���� k��gk�

User�oriented rekey messages for a leave can be con�
structed as follows� For each k�node x whose key has been
changed� say from k to k�� and for each unchanged child y
of x� the server constructs a rekey message by encrypting
the new keys of k�node x and all its ancestors �upto the
root� by the key K of k�node y� This rekey message is then
multicasted to userset �K��

This approach requires �d � 
��h � 
� rekey messages�
The encryption cost for the server is given by

�d� 
��
 � � � � � �� h� 
� � 
d���h
h���

�
�

Key�oriented rekeying In this approach� each new key is
encrypted individually� For example� as shown in Figure ��
for user u	 to leave the lower secure group in the �gure�
server s needs to send the following four rekey messages�

s� fu�� u�� u�g � fk���gk���
s� fu�� u�� u�g � fk���gk���
s� u� � fk���gk�� � fk��gk�
s� u� � fk���gk�� � fk��gk�

The leave protocol based upon key�oriented rekeying is
presented in Figure �� Step �	� in Figure � speci�es how the
rekey messages are constructed and distributed to users�

Note that by storing encrypted new keys for use in dif�
ferent rekey messages� the encryption cost of this approach
is d�h � 
�� which is much less than that of user�oriented
rekeying� The number of rekey messages is �d � 
��h � 
��
same as user�oriented rekeying�

Group�oriented rekeying� A single rekey message is con�
structed containing all new keys� For example� as shown in
Figure �� for user u	 to leave the lower secure group in the
�gure� server s needs to send the following rekey message�

�



�
� u� s � f leave�request gku
��� s� u � f leave�granted gku
��� s � �nd the leaving point �the parent of ku��

remove ku from the tree�
let xj�� denote the deleted k�node for ku�
xj the leaving point� x
 the root�
and xi�� the parent of xi for i � 
� � � � � j�

randomly generate keys K�


� � � � � K
�

j

as the new keys of x
� � � � � xj
�	� for i � � upto j do

for each child y of xi do
let K denote the key at k�node y
if y 	� xi�� then do
let M � fK�

igK � fK
�

i��gK�

i
� � � � � fK�


gK�

�

s� userset �K� � M

Figure �� Leave protocol for a tree key graph �key�oriented
rekeying��

let L
 denote fk���gk��� � fk���gk��� � fk���gk��
let L� denote fk��gk� � fk��gk�
s� fu�� � � � � u�g � L
� L�

Note that for a leave� this single rekey message is about
d times bigger than the rekey message for a join� where d is
the average degree of a k�node�

The leave protocol based upon group�oriented rekeying
is presented in Figure �� This approach uses only one rekey
message which is multicasted to the entire group� and the
encryption cost is d�h� 
�� same as key�oriented rekeying�

�
� � ��� �same as Figure ��
�	� for i � � upto j do

let fz�� � � � � zrg be the set of the children of xi
let J�� � � � � Jr denote the keys at z�� � � � � zr
let Li denote fK

�

igJ� � � � � � fK
�

igJr
s� userset �K�


� � L
� � � � � Lj

Figure �� Leave protocol for a tree key graph �group�oriented
rekeying��

��� Cost of encryptions and decryptions

An approximate measure of the computational costs of the
server and users is the number of key encryptions and de�
cryptions required by a join�leave operation� Let n be the
number of users in a secure group� For each join�leave op�
eration� the user that requests the operation is called the
requesting user� and the other users in the group are non�
requesting users� For a join�leave operation� we tabulate the
cost of a requesting user in Table ��a�� the cost of a non�
requesting user in Table ��b�� and the cost of the server in
Table ��c�� These costs are from the protocols described
above for star and tree key graphs� and from ��
� for com�
plete key graphs� �Key�oriented or group�oriented rekeying
is assumed for tree key graphs��

For a key tree� recall that d and h denote the degree
and height of the tree respectively� In this case� for a non�
requesting user u� the average cost of u for a join or a leave
is less than d

d��
which is independent of the size of the tree

�derivation in ��
���
Assuming that the number of join operations is the same

as the number of leave operations� the average costs per
operation are tabulated in Table � for the server and a user
in the group�

�a� the requesting user
Star Tree Complete

join 
 h�
 �n

leave � � �

�b� a non�requesting user
Star Tree Complete

join 
 d
d��

�n��

leave 
 d
d��

�

�c� the server
Star Tree Complete

join � ��h�
� �n��

leave n�
 d�h�
� �

Table �� Cost of a join�leave operation�

cost Star Tree Complete
cost of the server n�� �d� ���h� 
��� �n

cost of a user 
 d��d� 
� �n

Table �� Average cost per operation�

From Table �� it is obvious that complete key graphs
should not be used� On the other hand� scalable group key
management can be achieved by using tree key graphs� Note
that for a full and balanced d�ary tree� the average server
cost is �d����h� 
��� � �d����logd�n����� However� each
user has to do slightly more work �from 
 to d

d��
�� For d � 	�

a user needs to do 
��� decryptions on the average instead
of one� �It can be shown that the server cost is minimized
for d � 	� i�e�� the optimal degree of key trees is four��

� Technique for Signing Rekey Messages

In our join�leave protocols� each rekey message contains one
or more new keys� Each new key� destined for a set of users�
is encrypted by a key known only to these users and the
server� It is possible for a user to masquerade as the server
and send out rekey messages to other users� Thus if users
cannot be trusted� then each rekey message should be digi�
tally signed by the server�

We note that a digital signature operation is around two
orders of magnitude slower than a key encryption using DES�
For this reason� it is highly desirable to reduce the number of
digital signature operations required per join�leave� If each
rekey message is signed individually� then group�oriented
rekeying� using just one rekey message per join�leave� would
be far superior to key�oriented �user�oriented� rekeying�
which uses many rekey messages per join�leave�

Consider m rekey messages� M�� � � � �Mm� with message
digests� di � h�Mi� for i � 
� � � � �m� where h�� is a secure
message digest function such as MD�� The standard way to
provide authenticity is for the server to sign each message
digest �with its private key� and send the signed message
digest together with the message� This would require m
digital signature operations for m messages�

We next describe a technique� implemented in our pro�
totype key server� for signing a set of messages using just
a single digital signature operation� The technique is based
upon a scheme proposed by Merkle �
	��

Suppose there are four messages with message digests
d�� d�� d�� and d�� Construct message D�� containing d�
and d�� and compute message digest d�� � h�D���� Simi�
larly� construct message D�� containing d� and d�� and com�
pute message digest d�� � h�D���� Then construct message

�



key tree one signature per rekey msg one signature for all rekey msgs
degree 	 msg size �byte� proc time �msec� msg size �byte� proc time �msec�

join leave join leave ave join leave join leave ave
user ����
 ����� ���� ��	�� 
	��� �
��� ����� 
��� 
��
 
���
key ����� ����� ���� ����� 
	��
 ����� �		�� 
��
 
��� 
	��
group ����� 
����� 

�� 
��� 

�� ����� 
����� 

�� 
��� 

��

Table 	� Average rekey message size and server processing time �n��
��� DES� MD�� RSA�

0

0.5

1

1.5

2

2.5

3

3.5

4

32 64 128 256 512 1024 2048 4096 8192

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

group size

user-oriented
key-oriented

group-oriented

10

11

12

13

14

15

16

32 64 128 256 512 1024 2048 4096 8192

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

group size

user-oriented
key-oriented

group-oriented

�a� with encryption only �b� with encryption and signature

Figure 
�� Server processing time per request vs group size �key tree degree 	��

D��� containing d�� and d��� and compute message digest
d��� � h�D����� The server signs message digest d��� with
its private key� The server then sends the signed message
digest� sign�d����� together with D���� D��� and M� to a
user that needs M��

The user veri�es� by �rst decrypting sign�d����� that
d��� � h�D����� Subsequently� the user veri�es that d��
in D��� is equal to h�D���� and also d� in D�� is equal to
h�M��� which assures thatM� was indeed sent by the server�
The above example can be easily extended to m messages
in general�

The bene�ts of this technique for signing rekey messages
are demonstrated in Table 	 for both key�oriented and user�
oriented rekeying� �Note that it is not needed by group�
oriented rekeying which uses one rekey message per join�
leave�� The average rekey message size per join�leave is
shown� as well as the server�s processing time per join�leave
�ave denotes the average of average join and leave process�
ing times�� The experiments were performed for an initial
group size of �
��� with DES�CBC encryption� MD� mes�
sage digest� and RSA digital signature ��
��bit modulus��
Additional details of our experimental setup can be found
in Section �� With the technique for signing rekey mes�
sages� the processing time reduction for key�oriented and
user�oriented rekeying is about a factor of ten �for exam�
ple� 
	�� msec versus 
	��
 msec in the case of key�oriented
rekeying�� There is however a small increase �around �����
bytes� in the average rekey message size�

� Experiments and Performance Comparisons

We have designed and constructed a prototype group key
server� as well as a client layer� which implement join�leave
protocols for all three rekeying strategies in Section � and
the technique for signing rekey messages in Section 	�

We performed a large number of experiments to evaluate

the performance of the rekeying strategies and the technique
for signing rekey messages� The experiments were carried
out on two lightly loaded SGI Origin ��� machines running
IRIX ��	� The machines were connected by a 
�� Mbps
Ethernet� The group key server process runs on one SGI
machine� The server is initialized from a speci�cation �le
which determines the inital group size� the rekeying strat�
egy� the key tree degree� the encryption algorithm� the mes�
sage digest algorithm� the digital signature algorithm� etc�
A client�simulator runs on the other SGI simulating a large
number of clients� Actual rekey messages� as well as join�
join�ack� leave� leave�ack messages� are sent between indi�
vidual clients and the server using UDP over the 
�� Mbps
Ethernet� Cryptographic routines from the publicly avail�
able CrytoLib library are used �

��

For each experiment with an initial group size n� the
client�simulator �rst sent n join requests� and the server
built a key tree� Then the client�simulator sent 
��� join�
leave requests� The sequence of 
��� join�leave requests was
generated randomly according to a given ratio �the ratio was

�
 in all our experiments to be presented�� Each experi�
ment was performed with three di�erent sequences of 
���
join�leave requests� For fair comparisons �between di�erent
rekeying strategies� key trees of di�erent degrees� etc��� the
same three sequences were used for a given group size� The
server employs a heuristic that attempts to build and main�
tain a key tree that is full and balanced� However� since the
sequence of join�leave requests is randomly generated� it is
unlikely that the tree is truly full and balanced at any time�

To evaluate the performance of di�erent rekeying strate�
gies as well as the technique for signing rekey messages� we
measured rekey message sizes �in bytes� and processing time
�in msec� used by the server per join�leave request� Specif�
ically� the processing time per join�leave request consists of
the following components� First� the server parses a request�
traverses the key graph to determine which keys are to be
updated� generates new keys� and updates the key graph�

�



key tree rekey msg size �byte� no� of rekey msgs
degree 	 per join per leave per join per leave

ave min max ave min max ave min max ave min max
user �
��� 
�� ��� ����� ��� 	
� ���� � � 
���� 
� ��
key ����� �
� �
� �		�� �		 	�� ���� � � 
���� 
� ��
group ����� ��� ��	 
����� ��� 
��� 
��� 
 
 
��� 
 


key tree rekey msg size �byte� no� of rekey msgs
degree � per join per leave per join per leave

ave min max ave min max ave min max ave min max
user ����� 
�� 	�� ����� ��� ��� ���� 	 � ����
 �� ��
key �
��� �
� �		 �
	�� �		 	�	 ���� 	 � ����
 �� ��
group 	�	�� ��	 	�� 
����
 
��� 
��	 
��� 
 
 
��� 
 


key tree rekey msg size �byte� no� of rekey msgs
degree 
� per join per leave per join per leave

ave min max ave min max ave min max ave min max
user ��	�� 
�� 	�� ����	 �		 �		 	��� � 	 	���
 	� 	�
key ����� 
�� 	�� ����� ��� ��	 	��� � 	 	���
 	� 	�
group 	���� �	� 	�� 
����
 
��� 
�	� 
��� 
 
 
��� 
 


Table �� Number and size of rekey messages� with encryption and signature� sent by the server �initial group size �
���

Second� the server performs encryption of new keys and con�
structs rekey messages� Third� if message digest is speci�ed�
the server computes message digests of the rekey messages�
Fourth� if digital signature is speci�ed� the server computes
message digests and a digital signature as described in Sec�
tion 	� Lastly� the server sends out rekey messages as UDP
packets using socket system calls�	

The server processing time per request �averaged over
joins and leaves� versus group size �from �� to �
��� is shown
in Figure 
�� Note that the horizontal axis is in log scale�
The left �gure is for rekey messages with DES�CBC encryp�
tion only �no message digest and no digital signature�� The
right �gure is for rekey messages with DES�CBC encryption�
MD� message digest� and RSA��
� digital signature� The
key tree degree was four in all experiments� We conclude
from the experimental results that our group key manage�
ment service is scalable to very large groups since the pro�
cessing time per request increases �approximately� linearly
with the logarithm of group size for all three rekeying strate�
gies� Other experiments support the same conclusion for key
tree degrees of � and 
��

The average server processing time versus key tree de�
gree is shown in Figure 

� These experimental results illus�
trate three observations� First� the optimal degree for key
trees is around four� Second� with respect to server process�
ing time� group�oriented rekeying has the best performance�
with key�oriented rekeying in second place� Third� signing
rekey messages increases the server processing time by an
order of magnitude �it would be another order of magnitude
more for key�oriented and user�oriented rekeying without a
special technique for signing multiple messages�� The left
hand side of the �gure is for rekey messages with DES�CBC
encryption only �no message digest and no digital signature��
The right hand side of the �gure is for rekey messages with
DES�CBC encryption� MD� message digest� and RSA��
�
digital signature� The initial group size was �
�� in these
experiments�

	The processing time is measured using the UNIX system call
getrusage�� which returns processing time �including time of sys�
tem calls� used by a process� In the results presented herein� the
processing time for a join request does not include any time used to
authenticate the requesting user �i�e�� step ��� in the join protocols
of Figure � and Figure ��� We feel that any authentication overhead
should be accounted for separately�

key tree rekey msg size �byte� no� of rekey
degree 	 per join per leave msgs per

ave ave join�leave
user ����� ����	 

key ����� ����� 

group ����� 
����� 


key tree rekey msg size �byte� no� of rekey
degree � per join per leave msgs per

ave ave join�leave
user ����� �	��� 

key �
��� ����� 

group 	�	�� 
����
 


key tree rekey msg size �byte� no� of rekey
degree 
� per join per leave msgs per

ave ave join�leave
user 
���� �	��� 

key �
	�� ����� 

group 	���� 
����
 


Table �� Number and size of rekey messages� with encryp�
tion and signature� received by a client �initial group size
�
���

Table � presents the size and number of rekey messages
sent by the server� Note that group�oriented rekeying uses a
single large rekey message per request �sent via group mul�
ticast�� while key�oriented and user�oriented rekeying use
multiple smaller rekey messages per request �sent via sub�
group multicast or unicast���
 Note that the total number
of bytes per join�leave transmitted by the server is much
higher in key�oriented and user�oriented rekeying than in
group�oriented rekeying�

Table � presents the size and number of rekey messages
received by a client� Only the average message sizes are
shown� because the minimum and maximum sizes are the
same as those in Table �� Note that each client gets exactly
one rekey message for all three rekeying strategies� For key�
oriented and user�oriented rekeying� the average message
size is smaller than the corresponding average message size
in Table �� The is because the average message size here

�
The experiments reported herein were performed with each rekey
message sent just once by the server via subgroup multicast�

�



0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

key tree degree

user-oriented
key-oriented

group-oriented

10

12

14

16

18

20

22

24

2 4 6 8 10 12 14 16

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

key tree degree

user-oriented
key-oriented

group-oriented

�a� per join with encryption only �d� per join with encryption and signature

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

key tree degree

user-oriented
key-oriented

group-oriented

10

12

14

16

18

20

22

24

2 4 6 8 10 12 14 16

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

key tree degree

user-oriented
key-oriented

group-oriented

�b� per leave with encryption only �e� per leave with encryption and signature

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

key tree degree

user-oriented
key-oriented

group-oriented

10

12

14

16

18

20

22

24

2 4 6 8 10 12 14 16

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

key tree degree

user-oriented
key-oriented

group-oriented

�c� per request with encryption only �f� per request with encryption and signature

Figure 

� Server processing time vs key tree degree �initial group size �
����

was calculated over all clients� and many more clients re�
ceived small rekey messages than clients that received large
rekey messages� The results in this table show that group�
oriented rekeying� which has the best performance on the
server side� requires more work on the client side to process
a larger message than key�oriented and user�oriented rekey�
ing� The average rekey message size on the client side is the
smallest in user�oriented rekeying�

From the contents of rekey messages� we counted and
computed the average number of key changes by a client

per join�leave request� which is shown in Figure 
�� The
top �gure shows the average number of key changes versus
the key tree degree� and the bottom �gure shows the average
number of key changes versus the initial group size of each
experiment� Note that the average number of key changes by
a client is relatively small� and is very close to the analytical
result� d��d� 
� shown in Table � in Section ��


�



1

1.2

1.4

1.6

1.8

2

2 4 6 8 10 12 14 16

nu
m

be
r 

of
 k

ey
 c

ha
ng

es

key tree degree

n = 1024
n = 2048
n = 4086
n = 8192
analysis

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

32 64 128 256 512 1024 2048 4096 8192

nu
m

be
r 

of
 k

ey
 c

ha
ng

es

group size

tree degree is 4
tree degree is 8

tree degree is 16

Figure 
�� Number of key changes by a client per request�

	 Related Work

The scalability problem of group key management for a
large group with frequent joins and leaves was previously ad�
dressed by Mittra with his Iolus system �
��� Both Iolus and
our approach solve the scalability problem by making use of
a hierarchy� The similarity� however� ends here� The system
architectures are very di�erent in the two approaches� We
next compare them by considering a tree hierarchy with a
single root �i�e�� a single secure group��

Iolus�s tree hierarchy consists of clients at the leaves with
multiple levels of group security agents �agents� in short�
above� For each tree node� the tree node �an agent� and its
children �clients or lower�level agents� form a subgroup and
share a subgroup key� There is no globally shared group key�
Thus a join and leave in a subgroup does not a�ect other
subgroups� only the local subgroup key needs to be changed�

Our tree hierarchy consists of keys� with individual keys
at leaves� the group key at the root� and subgroup keys
elsewhere� There is a single key server for all the clients�
There are no agents� but each client is given multiple keys
�its individual key� the group key� and some subgroup keys��

In comparing the two approaches� there are several issues
to consider� performance� trust� and reliability�

Performance� Roughly speaking� since both approaches
make use of a hierarchy� both attempt to change a O�n�
problem into a O�log�n�� problem where n denotes group
size� They di�er however in where and when work is per�
formed to achieve secure rekeying when a client joins�leaves
the secure group�

Secure rekeying after a leave requires more work than
after a join because� unlike a join� the previous group key

cannot used and n rekey messages are required �this is re�
ferred to in �
�� as a � does not equal n type problem��
This is precisely the problem solved by using a hierarchy in
both approaches�

The main di�erence between Iolus and our approach is in
how the � a�ects n type problem �
�� is addressed� In our
approach� every time a client joins�leaves the secure group a
rekeying operation is required which a�ects the entire group�
Note that this is not a scalability concern in our approach
because the server cost is O�log�n�� and the client cost is
O�
��

In Iolus� there is no globally shared group key with the
apparent advantage that whenever a client joins�leaves a
subgroup only the subgroup needs to be rekeyed� However�
for a client to send a message con�dentially to the entire
group� the client needs to generate a message key for en�
crypting the message and the message key has to be securely
distributed to the entire group via agents� Each agent de�
crypts using one subgroup key to retrieve the message key
and reencrypts it with another subgroup key for forwarding
�
���

That is� most of the work in handling the � a�ects n
type problem is performed in Iolus when a client sends a
message con�dentially to the entire group �rather than when
a client joins�leaves the group�� In our approach� most of
the work in handling the � a�ects n type problem is per�
formed when a client joins�leaves the secure group �rather
than when a client sends messages con�dentially to the en�
tire group��

Trust� Our architecture requires a single trusted entity�
namely� the key server� The key server may be replicated
for reliability�performance enhancement� in which case� sev�
eral trusted entities are needed� Each trusted entity should
be protected using strong security measures �e�g� physical
security� kernel security� etc��� In Iolus� however� there are
many agents and all of the agents are trusted entities� Thus
the level of trust required of the system components is much
greater in Iolus than in our approach�

Reliability� In Iolus� agents are needed to securely forward
message keys� When an agent fails� a backup is needed�
It would appear that replicating a single key server �in our
approach� to improve reliability is easier than backing up a
large number of agents���


 Conclusions

We present three rekeying strategies� user�oriented� key�
oriented and group�oriented and specify join�leave proto�
cols based upon these strategies� For key�oriented and user�
oriented rekeying� which use multiple rekey messages per
join�leave� we present a technique for signing multiple mes�
sages with a single digital signature operation� Compared to
using one digital signature per rekey message� the technique
provides a tenfold reduction in the average server processing
time of a join�leave�

The rekeying strategies and protocols are implemented
in a prototype group key server we have built� From mea�
surement results of a large number of experiments� we con�
clude that our group key management service using any of
the three rekeying strategies is scalable to large groups with
frequent joins and leaves� In particular� the average server
processing time per join�leave increases linearly with the

��Craig Partridge observed that agents can be implemented in ex�
isting 
rewalls and derive their reliability and trustworthiness from
those of 
rewalls�







logarithm of group size� We found that the optimal key tree
degree is around four�

On the server side� group�oriented rekeying provides the
best performance� with key�oriented rekeying in second
place� and user�oriented rekeying in third place� On the
client side� user�oriented rekeying provides the best per�
formance� with key�oriented rekeying in second place� and
group�oriented rekeying in third place� In particular� for a
very large group whose clients are connected to the network
via low�speed connections �modems�� key�oriented or user�
oriented rekeying would be more appropriate than group�
oriented rekeying�

We next consider the amount of network tra
c gener�
ated by the three rekeying strategies� With group�oriented
rekeying� a single rekey message is sent per join�leave via
multicast to the entire group� the network load generated
would depend upon the network con�guration �local area
network� campus network� wide area Internet� etc�� and
the group�s geographic distribution� With key�oriented and
user�oriented rekeying� many smaller rekey messages are sent
per join�leave to subgroups� If the rekey messages are sent
via unicast �because the network provides no support for
subgroup multicast�� the network load generated would be
much greater than that of group�oriented rekeying�

It is possible to support subgroup multicast by the
method in �
�� or by allocating a large number of multi�
cast addresses� one for each subgroup that share a key in
the key tree being used� A more practical approach� how�
ever� is to allocate just a small number of multicast addresses
�e�g�� one for each child of the key tree�s root node� and use
a rekeying strategy that is a hybrid of group�oriented and
key�oriented rekeying� It is straightforward to design such
a hybrid strategy and specify the join�leave protocols� Fur�
thermore a hybrid approach� involving the use of some Iolus
agents at certain locations� such as �rewalls� may also be
appropriate�

Lastly� the reader may wonder why we use key graphs to
specify a secure group even though key trees are su
cient
for scalable management of a group key� This is because we
are constructing a group key management service for appli�
cations that require the formation of multiple secure groups
over a population of users and a user can join several secure
groups� For these applications� the key trees of di�erent
group keys are merged to form a key graph �
���

Acknowledgement

We thank Craig Partridge for his constructive comments in
shepherding the �nal revision of this paper�

References

�
� Tony Ballardie� Scalable Multicast Key Distribution�
RFC ����� May 
����

��� Tony Ballardie and Jon Crowcroft� Multicast�Speci�c
Security Threats and Counter�Measures� In Proceedings
Symposium on Network and Distributed System Secu�
rity� 
����

��� Shimshon Berkovits� How to Broadcast a Secret� In
D�W� Davies� editor� Advances in cryptology� EURO�
CRYPT ���� volume �	� of Lecture Notes in Computer
Science� pages �����	
� Springer Verlag� 
��
�

�	� R� Bird� I� Gopal� A� Herzberg� P� Janson� S� Kutten�
R� Molva� and M� Yung� The KryptoKnight family of
light�weight protocols for authentication and key distri�
bution� IEEE�ACM Transactions on Networking� ��
��
February 
����

��� Guang�Huei Chiou and Wen�Tsuen Chen� Secure
Broadcasting Using the Secure Lock� IEEE Transac�
tions on Software Engineering� 
�����������	� August

����

��� Stephen E� Deering� Multicast Routing in Internet�
works and Extended LANs� In Proceedings of ACM
SIGCOMM ���� August 
����

��� Amos Fiat and Moni Naor� Broadcast Encryption�
In Douglas R� Stinson� editor� Advances in cryptology�
CRYPTO ��	� volume ��� of Lecture Notes in Com�
puter Science� pages 	���	�
� Springer Verlag� 
��	�

��� Li Gong� Enclaves� Enabling Secure Collaboration over
the Internet� IEEE Journal on Selected Areas in Com�
munications� pages �������� April 
����

��� H� Harney and C� Muckenhirn� Group Key Management
Protocol 
GKMP� Architecture� RFC �
��� July 
����

�
�� H� Harney and C� Muckenhirn� Group Key Management
Protocol 
GKMP� Speci�cation� RFC �
�	� July 
����

�

� J� B� Lacy� D� P� Mitchell� and W� M� Schell� CryptoLib�
cryptography in software� In Proceedings of USENIX�
�th UNIX Security Symposium� October 
����

�
�� Simon S� Lam and Chung Kei Wong� Keystone� A
Group Key Management Service� Work in progress�
Department of Computer Sciences� The University of
Texas at Austin�

�
�� Brian Neil Levine and J�J� Garcia�Luna�Aceves� Im�
proving Internet Multicast with Routing Labels� In
Proceedings of International Conference on Network
Protocols� 
����

�
	� Ralph C� Merkle� A Certi�ed Digital Signature� In
Advances in Cryptology � CRYPTO ���� 
����

�
�� Suvo Mittra� Iolus� A Framework for Scalable Secure
Multicasting� In Proceedings of ACM SIGCOMM ����

����

�
�� B� Cli�ord Neuman� Proxy�Based Authorization and
Accounting for Distributed Systems� In Proceedings of
�	th International Conference on Distributed Comput�
ing Systems� pages ������
� May 
����

�
�� Jennifer G� Steiner� Cli�ord Neuman� and Je�rey I�
Schiller� Kerberos� An Authentication Service for Open
Network Systems� In USENIX Winter Conference�
pages 
�
����� February 
����

�
�� D�R� Stinson� On Some Methods for Unconditionally
Secure Key Distribution and Broadcast Encryption�
Designs� Codes and Cryptography� �
����
���	�� 
����

�
�� J�J� Tardo and K� Alagappan� SPX� Global authentica�
tion using public key certi�cates� In Proceedings of ��th
IEEE Symposium on Research in Security and Privacy�
pages �����		� May 
��
�

���� Debby M� Wallner� Eric J� Harder� and Ryan C� Agee�
Key Management for Multicast� Issues and Architec�
tures� Working draft� National Security Agency� July

����

��
� Chung Kei Wong� Mohamed Gouda� and Simon S� Lam�
Secure Group Communications Using Key Graphs�
Technical Report TR ������ Department of Computer
Sciences� The University of Texas at Austin� July 
����

���� Thomas Y�C� Woo� Raghuram Bindignavle� Shaowen
Su� and Simon S� Lam� SNP� An interface for secure
network programming� In Proceedings of USENIX���
Summer Technical Conference� June 
��	�

���� Thomas Y�C� Woo and Simon S� Lam� Designing a Dis�
tributed Authorization Service� In Proceedings IEEE
INFOCOM ���� San Francisco� March 
����


�


