
A Practical Approach to the InterGroup

Protocols ?

K. Berket, D. A. Agarwal, O. Chevassut

Ernest Orlando Lawrence Berkeley National Laboratory

1 Cyclotron Rd, MS 50B-2239

Berkeley, CA 94720

Abstract

Existing reliable ordered group communication protocols have been developed for

local-area networks and do not, in general, scale well to large numbers of nodes and

wide-area networks. The InterGroup suite of protocols is a scalable group communi-

cation system that introduces an unusual approach to handling group membership,

and supports a receiver-oriented selection of service. The protocols are intended for

a wide-area network, with a large number of nodes, that has highly variable delays

and a high message loss rate, such as the Internet. The levels of the message deliv-

ery service range from unreliable unordered to reliable timestamp ordered. We also

present a secure group layer that builds on InterGroup to provide SSL-like security

for groups.

Key words: distributed systems, group communication, reliable multicast, security

PACS: 89.20.Ff, 89.20.Hh

? This work was supported by the Director, OÆce of Science. OÆce of Ad-

vanced Scienti�c Computing Research. Mathematical, Information, and Compu-

tational Sciences Division, U.S. Department of Energy under Contract No. DE-

AC03-76SF00098. This document is report LBNL-49126.
Email addresses: KBerket@lbl.gov (K. Berket), DAAgarwal@lbl.gov (D. A.

Agarwal), OChevassut@lbl.gov (O. Chevassut).
URL: http://www-itg.lbl.gov/CIF/GroupComm/ (K. Berket).

Preprint submitted to Elsevier Science 11 November 2001



1 Introduction

Distributed applications often need to maintain consistency of replicated in-
formation and coordinate the activities of many processes. Collaborative ap-
plications and distributed computations are both examples of these types of
applications. With the advent of grids [11], distributed computations will be
spread across multiple computer centers requiring eÆcient mechanisms for
coordination between the processes. Collaborations are by their very nature
distributed and built in an incremental, ad hoc manner. Group communication
provides a very natural mechanism for supporting these types of applications
and allowing them to use a peer-to-peer architecture rather than a server-based
architecture.

The MBone video-conferencing tools (vic, vat, and rat), the session directory
tool (sdr) and the whiteboard tool (wb) 1 are excellent examples of the peer-to-
peer model. These tools are designed to use multicast protocols to send data,
which allows groups to form and communicate without coordinating with a
server. This peer-to-peer model inherently makes the tools easier to design
and to operate for groups of two and groups of hundreds. Because there are
no servers, groups can be formed in an ad hoc manner with minimal setup.

There are many applications that can bene�t from the use of a peer-to-peer
group communication capability. Instant messaging systems, shared remote
visualization, shared virtual reality, �le-sharing applications and collaborative
remote control of instruments are just a few examples. Most of these applica-
tions currently use a central server to collect messages and forward them to
the participants. A peer-to-peer group communication service that provides
group membership services, reliable ordered message delivery, and progress in
the presence of process and network faults can be used to provide an eÆcient
mechanism for participants to talk directly to each other.

Although group communication systems can provide these services, the proto-
cols have historically been limited in their scalability. The InterGroup protocol
suite, described in this paper, is a group communication system that tackles
scalability by rede�ning the meaning of group membership, allowing voluntary
membership changes, adding a receiver-oriented selection of delivery services
(which permits heterogeneity of the receiver set), and providing a scalable re-
liability service. The InterGroup protocols are designed speci�cally with the
intention of scaling to the Internet and to large numbers of participants.

1 More information on all of these tools and their binaries can be found at

http://www-itg.lbl.gov/mbone.

2



2 Related Work

Group communication systems provide reliable group ordered message deliv-
ery and membership services that allow the system to make progress in the
presence of process and network faults. The main concerns in scaling these
protocols are 
ow control, congestion avoidance, the reliable multicast ser-
vice, and the delivery service. The delivery service needs to support reliable
group-ordered delivery and a form of virtual synchrony [6,18]. Virtual syn-
chrony is a property that de�nes consistency constraints for processes in a
dynamic group setting. Because of this, it is essential for the membership
protocols to be based on algorithms that reach consistent decisions.

Traditionally, group communication systems, such as the Totem Single Ring
Protocol (SRP) [4], Transis [3], Isis [6], and RMP [24], were designed for
the local-area network environment, where network latencies and losses are
minimal, and there is a relatively small number of processes. Because of this,
scalability concerns were not a top priority in the design of these systems.

Recently, group communication systems have made advances beyond the local-
area network environment, and research into scaling the membership services
has intensi�ed. One example protocol is the Totem Multiple Ring Protocol
(MRP) [2]. It uses a hierarchy of rings interconnected by gateways. Each ring
is an instantiation of the Totem SRP and the gateways provide coordination
and message forwarding between the rings.

To reduce the costs encountered in applications requiring the use of a large
number of process groups, dynamic light-weight groups [13] were introduced.
The idea is to map a large number of application process groups to a smaller
number of protocol process groups. For example, this concept has been imple-
mented by Horus [23], its follow-on Ensemble [22], the process group interface
of Totem [19], and the Totem MRP. The process group interface of Totem
provides a static mapping of the application groups to one protocol group,
while the gateways of the Totem MRP �lter the forwarding of messages based
on application groups.

Another trend in group communication systems has been the breaking up of
the system into building blocks. Horus introduced the building block approach
to group communication systems. This approach is used in these systems to
allow 
exible delivery services by providing an interface to the various building
blocks.

Moshe[15] is a membership service (building block) designed to be used by
a group communication system in a wide-area environment. It provides an
optimistic algorithm, for reaching a group-wide decision regarding the mem-
bership, that usually �nishes in one round. This result is achieved by separat-

3



ing the membership service from the fault detection mechanisms so that most
membership changes can be diagnosed by the fault detection algorithm and
treated as voluntary. Moshe also separates the membership service from the
virtual synchrony service.

Scalable Reliable Multicast (SRM) [10] is a protocol that was designed specif-
ically to scale to the Internet. However, it is not a full group communication
system; it only provides the mechanisms for recovering messages in a scalable
manner. It achieves this by separating the reliability mechanisms from the
loss detection mechanisms. The loss detection is left up to the application.
The SRM protocol exchanges session messages between group members to
update the control information at each individual process. The original SRM
protocol used a group-wide multicast for all of its communication, which lim-
ited its scalability. One proposed solution to this problem is the organization
of the group members in a self-con�guring hierarchy [21].

3 The Architecture

InterGroup is designed to operate in an asynchronous environment where no
bound can be placed on the time required for a computation or for commu-
nication of a message. Processes may fail by stopping and taking no further
actions. The network is allowed to partition and re-merge, and messages may
be duplicated or reordered by the network.

The InterGroup protocols are designed using a building block approach. The
protocols are divided into four separate modules based on functionality. This
modular design allows InterGroup to provide a 
exible service model. The rest
of this paper describes these modules. The message reliability service in the In-
terGroup protocols is provided by the reliable multicast module. The reliable
multicast module is responsible for retransmission mechanisms. It is described
in Section 5. The components of message ordering and delivery are in the
message delivery module, described in Section 6. The process group member-
ship protocols track the changes in the group membership. The components
of process group membership are described in Section 7. The control hierarchy
module provides a scalable mechanism for the exchange of control information
between sites in the system. The components of the control hierarchy are de-
scribed in Section 8. We precede the explanation of the individual components
with Section 4 where we introduce the primary InterGroup messages and the
data transmission algorithm.

4



4 Messages

4.1 Data Messages

Data messages are used for exchanging application information. The following
�elds are contained in a data message:

� type: The message type.
� pg: The identi�er of the process group to which this message belongs.
� sender: The identi�er of the process that sent this message. This uniquely
identi�es the process within the process group.

� seq: The sequence number of this message. It is incremented by one for each
data message sent by this sender. If another message from this sender has
the same value of this �eld, that message must be identical to this one or
is a Keep Alive message. This �eld is used to detect message loss and allow
FIFO ordering of messages from individual processes.

� timestamp: The timestamp of this message. This �eld is used to determine
a process group wide ordering of messages and to indicate causality.

� payload: Byte array containing the application data.

4.2 Keep Alive Message

Keep Alive (KA) messages are used by the InterGroup protocols to help detect
lost messages, to ensure progress in the delivery of messages, and to help
maintain liveness. The �elds of a Keep Alive message are identical to those of
a data message except: (1) the payload is empty and (2) the seq �eld contains
the value of the most recently sent data message.

Processes periodically send Keep Alive messages when no data messages are
available. A keep-alive timer is set whenever a message is sent. If the timer
expires before a data message is sent, a Keep Alive message is sent to the
group. The header of this message contains the same information as in the
last data message sent by this process, but with an updated timestamp value.

4.3 Data Transmission

The InterGroup system uses an adaptation of the Real Time Control Pro-
tocol (RTCP) 
ow control algorithms [20]. We use the RTCP algorithm for
calculating the time to wait before sending the next message. However, we
vary the bandwidth parameter used in the calculation, based on the message

5



loss in the group. The bandwidth parameter is slowly increased during times
when no losses are reported. When a process receives noti�cation of a loss,
it reduces the bandwidth parameter, thus reducing the amount of traÆc that
the process attempts to send to the group.

We also add a wrapper around the RTCP algorithm that checks to see if the
process has too many outstanding messages. If that is the case, the process
sends only Keep Alive messages until the number of outstanding messages
falls below a threshold. The outstanding message limit stops the process from
sending new data messages until the system stabilizes.

This approach to 
ow control is conservative and we have not yet tried to
optimize the 
ow control mechanisms. The topic of 
ow control is still an
open research topic.

5 Reliable Multicast

The reliable multicast module provides the mechanisms to request the retrans-
mission of messages, and retransmit messages. The InterGroup protocols use
reliable multicast mechanisms that are an adaptation of the SRM protocol [10].
SRM provides a nice framework for multi-sender systems.

5.1 Retransmission Requests

When the delivery module at a process detects a missing message, it noti-
�es the reliable multicast module, which schedules a retransmission request.
The requests are scheduled based on random timeouts to suppress redundant
requests from processes sharing the loss.

The scheduling timeout is randomly chosen from an interval, which is a func-
tion of this process's estimated distance to the sender of the missing message.
The timeout is thus chosen from the uniform distribution

3i � [lowReqParam � dS; (lowReqParam+ highReqParam) � dS]

seconds, where dS is the estimated distance (latency) from this process to the
sender of the missing message. The variables lowReqParam and highReqParam

are adjustable via an adaptive algorithm and are discussed in more detail
in [10] (where they are referred to as C1 and C2). The parameter i is the
number of times the timeout calculation has been performed for this missing
message. It is set to 0 the �rst time the timeout is calculated.

6



When the timer for a retransmission request expires, the process sends the
retransmission request. It then increments i, recalculates the timeout, and
resets the timer to the new timeout. If the process receives a retransmission
request for a message for which it also has a request, it resets and reschedules
the timer for its own request. A retransmission request and its associated timer
are removed from the scheduler when the message is received by the process.
This is true whether the message is in its original or retransmitted form.

5.2 Retransmission of Data

When a process receives a retransmission request for a message it has, it
schedules the retransmission of the message. The retransmissions are sched-
uled based on random timeouts to suppress redundant retransmissions from
multiple processes that can satisfy the request. The timeout used for the re-
transmission scheduling is randomly chosen from the uniform distribution

[lowRtxParam � dR; (lowRtxParam+ highRtxParam) � dR],

where dR is the estimated distance from this process to the sender of the re-
transmission request. The variables lowRtxParam and highRtxParam are ad-
justable via an adaptive algorithm, and are discussed in more detail in [10]
(where they are referred to as D1 and D2).

If a process has scheduled the retransmission of a message and receives a
retransmission of that message from another process, then this process cancels
the timer and does not retransmit the message. Otherwise, when the timer
expires, the process sends the retransmission of the message.

6 Delivery Services

The InterGroup system provides the following delivery services within a group:
unreliable unordered, reliable source ordered, and reliable timestamp ordered.
Each process chooses the delivery service it expects from a group when it joins
the group. This decision applies to how messages are delivered at that process
from the group. Each process makes this designation independently and there
is no requirement that all the members of a group choose the same service.

Each InterGroup message is ordered based on three pieces of information in
the message: the process identi�er of the sender, the sequence number, and
the timestamp. Each process identi�er is unique within a group. The sequence
numbers provide a count of the messages sent by a sender. The timestamp is
used to preserve the causality between messages in the group. It is obtained

7



from a Lamport clock [16] which guarantees that messages from the same
source have increasing timestamps and that each message has a higher times-
tamp than any message the sending process has received prior to sending that
message. The actual delivery order is dependent on the service chosen at the
receiver.

6.1 Unreliable Unordered

The unreliable unordered (UU) delivery service is very similar to the service
provided by IP Multicast. Messages received for the group are delivered di-
rectly to the application. Some messages might never be received, and multiple
copies of the same message might be received. There is no guarantee regarding
the order in which messages are received. This service also includes an option
to allow the application to request information about the membership of the
group.

An example application that might use this type of service is a video confer-
ence. Video and audio reliability di�ers from typical data in that a suitable
representation of the data can be constructed without necessarily having all
of the data. In fact, smooth latency and jitter averages are often more im-
portant than reliability. In addition, several codecs already incorporate data
redundancy to protect against loss for this type of data.

Applications receiving messages using the UU delivery service, may su�er more
overhead, when compared with IP multicast. This is caused primarily by the
headers InterGroup places on the messages.

6.2 Reliable Source Ordered

The reliable source ordered (RSO) delivery service delivers messages from a
source (or set of sources) to the application. This delivery service preserves
the timestamp order of the messages from each source. The RSO delivery ser-
vice guarantees that there will be no missing messages in the set of messages
delivered from a particular source and that no message will be delivered twice
at a receiver. Messages missing from the source order are detected by gaps
in the sequence numbers of the messages received from a source. If this ser-
vice detects a missing message, it requests a retransmission of that missing
message from the reliability module. Keep Alive messages are used to aid in
loss detection. The sequence number of a Keep Alive message is equal to the
sequence number of the most recent data message sent by the source. Thus,
Keep Alive messages allow us to recognize the loss of the most recent data
message sent by the source.

8



The RSO service is well-suited to applications that currently use multiple
TCP/IP [9] connections to transmit information to a group of sites. A speci�c
usage example might be a large chain store distributing pricing information
to all its outlets periodically.

6.3 Reliable Timestamp Ordered

Applications using the reliable timestamp ordered (RTO) delivery service re-
ceive messages in timestamp order for the process group. All of the processes
in the process group keep a local Lamport clock. This Lamport clock has a
slight modi�cation such that the time is updated to match the local processor
time whenever the Lamport clock lags behind the local time. Using the local
processor time allows the time value to increase in the absence of messages.
This provides a tighter synchronization mechanism for the clocks and leads to
lower delivery latencies for the RTO delivery service.

The data messages are delivered to the application in timestamp order. A
message is not delivered until all the messages with a lower timestamp have
been delivered. The delivery algorithm keeps a message bu�er for each process
in the group. Messages are placed in the bu�er only if there are no missing
messages with a lower sequence number from that process. Missing messages
are detected and requested for retransmission in the same manner as with the
RSO delivery service. The messages in each bu�er are ordered according to
their sequence numbers. A message is delivered to the application when it is
at the head of its bu�er and there is a message with a higher timestamp at
the head of every other message bu�er.

If any of the message bu�ers are empty there can be no progress in the de-
livery of messages. Many applications do not send messages continuously, so
Keep Alive messages are used to keep the timestamps moving forward and
to allow continued message ordering. A Keep Alive message is placed in the
message bu�er corresponding to its sender if it has the same sequence number
as the last message delivered from this bu�er, and there are no messages in
the bu�er. In the case that a Keep Alive message is already in the bu�er, the
new message replaces the one already present if they have the same sequence
number and the new message has a higher timestamp. When the delivery algo-
rithm determines that a Keep Alive message is to be delivered, that message
is removed from its message bu�er and is not delivered to the application.
The use of Keep Alive messages keeps the latency to delivery of messages at
a relatively constant level.

The RTO delivery service is most often used when the application requires
consistency across the group participants. A speci�c example is for database

9



updates to a replicated database. It is also useful to collaborative applications
for coordinating activities like a shared whiteboard. The RTO delivery service
can also be used to achieve atomic broadcast in systems where all the partic-
ipants subscribe to the RTO service and the number of participants is known
in advance.

6.4 Preserving Causality of Messages

Each process determines the delivery service it desires for a process group
at the receiving end. To achieve this receiver-oriented delivery service, we
order messages independently at each receiver without restricting the delivery
service choices of the other receivers, and separate the reliability service from
the ordering service.

One signi�cant bene�t of the receiver-oriented selection of delivery service is
that the number of acknowledgments that must be gathered from participants
is minimized. Only processes subscribed to the RTO delivery service have to
participate in this operation. Processes that choose the other delivery services
only wait for the messages to be in the order they have requested, thus cutting
down on the latency to deliver messages.

Since each process can choose its delivery service, the sender of a message does
not know which delivery service(s) will be requested. To ensure causality of
messages in the group, the InterGroup protocols subscribe a process to the
RTO delivery service when that process is sending messages regardless of the
service it is actually subscribed to. This is handled internal to the InterGroup
protocols and does not a�ect the application's delivery service. This results in
unnecessary overhead if none of the processes receiving messages in the process
group are subscribed to the RTO delivery service. However, the increased

exibility and data abstraction that this method provides o�set this negative.

7 Membership

The discussion thus far assumed that the set of processes in a group is static.
The membership module provides the InterGroup protocols with the mecha-
nisms to handle dynamic groups where processes may join, leave, or fail and
groups can merge or partition.

This section explains the InterGroup approach to dynamic membership and
its e�ect on the application. We refer to a representation of the group member-
ship as a view. A view is delivered to the application whenever the membership

10



changes. A view consists of an identi�er and the membership. Each identi�er
is unique for this group and the identi�ers have an ordering relation that guar-
antees that the identi�ers monotonically increase across views at a process.
The membership of a view is a set of process identi�ers that represent the
processes that share this view.

A cornerstone of the InterGroup approach to membership is the recognition
that the message order and reliability constraints can be met by tracking
only the processes currently sending messages in the group. In the InterGroup
system, not all processes are equal. In each process group, a process is classi�ed
by its recent activity. If the process has been sending data to the group recently,
it is classi�ed as an active sender. Each group thus has two memberships;
the receiver membership that contains all the members of the group, and the
sender membership that contains only the active senders. The sender group
membership is maintained using consistency-based membership mechanisms
that are based on the algorithms used in Transis [3]. In this algorithm the
membership is kept explicitly. In contrast, our receiver group membership is
not needed for the purposes of message ordering and reliable delivery, so it
does not need to be explicitly maintained. Processes are moved into and out
of the sender group based on their current sending behavior.

The active senders run a membership repair algorithm (MRA) designed so
that participation of processes outside the sender group is minimized. The
active senders run the membership algorithms to reach a consistent decision on
the new membership and on the place in the message 
ow that a membership
change occurs. An active sender enters the MRA if a process in the membership
of its view fails, a process that is not in the membership of its view starts
sending in the group, or it detects that another process in its view is running
the MRA.

In the MRA, the sender executes an algorithm to determine the next view that
it will deliver. This algorithm requires that all of the processes in the member-
ship of the next view agree to install the same view. It also requires that the
processes in both the membership of the current view and the membership of
the next view agree on the messages that must be delivered prior to installing
the next view. Once this agreement has been reached the processes deliver the
messages that they agreed to deliver and then each process sends a message
signaling its readiness to install the next view. Once a process receives this
message from every process in the membership of the next view, it installs the
next view and ends the MRA. If any process in the membership of the next
view fails before the MRA ends, the processes restart the MRA.

The agreements of the next view and messages to deliver in a view of the MRA
algorithm are important as they provide consistency and some synchronization
between the processes. They also enable us to provide virtual synchrony [6,18]

11



to applications that request the RTO delivery service.

Processes that are not active senders but that have requested the RTO deliv-
ery service also participate in the membership repair by running the receiver
membership repair algorithm (RMRA). The RMRA is initiated on receipt
of a message that signals the beginning of the MRA from a process that is
currently an active sender. The process running the RMRA halts delivery of
messages to the application. The timestamp of the last message delivered to
the application before delivery was halted provides the earliest logical time at
which the process can begin a new membership. The process then waits for
a message that describes the membership change. This message is sent by an
active sender and signals the completion of the MRA. The information in this
message includes a list of members in the new view and the logical time at
which the view begins. This process then attempts to recover and order all
of the messages that precede the new view. If it succeeds in this recovery, it
installs the new view, and successfully completes the RMRA. Otherwise, it
does not successfully complete the RMRA.

The combination of the MRA and RMRA allows the active senders to provide
virtual synchrony information to the entire group, while keeping the number
of processes participating in consensus-based membership to a minimum.

The membership mechanisms described above deal with membership changes
that occur involuntarily. If membership changes occur at a process's request
more eÆcient mechanisms can be used. A process, wishing to join the sender
group, contacts a member of the sender group and that process serves as
a sponsor. The sponsor sends a message to the group requesting to add this
process to the sender group. The delivery of that message signi�es the addition
of the process to the sender group. A process wishing to leave the sender group
sends a message to the group, requesting that it be removed from the sender
group. The delivery of that message signi�es the removal of the process from
the sender group.

InterGroup also employs voluntary membership mechanisms for the receiver
group. Processes may enter and leave the receiver group without impact on
the other group members. However, when entering the group, a process needs
to determine the current view. The joining process �rst contacts a member of
the sender group that serves as a sponsor and requests this information from
it. The sponsor replies with the current view and the current sequence number
for each of the members of that view.

12



Coordinator

Child

Fig. 1. The control hierarchy.

8 Control Information

There are many types of control information that need to be gathered by the
InterGroup protocols. The reliable multicast protocols need information about
the latency between processes. The bu�er management protocols need infor-
mation from the reliability service so messages are held in the bu�ers only until
they have been delivered to all of the processes in the group. This informa-
tion must be obtained from all of the processes participating in InterGroup.
To make this operation more eÆcient and scalable, we use a hierarchically
organized structure to gather and disseminate the control information.

The logical structure of this hierarchy attempts to mimic the underlying net-
work topology by considering the latencies between control processes and is
based on the work proposed in [21] for SRM. The control processes are orga-
nized in multicast trees, with the roots referred to as coordinators, and the
leaves referred to as children (Fig. 1). Each child is associated with at least
one coordinator. The local group of a coordinator is composed of the children
of that coordinator (including the coordinator itself). The coordinator group
includes all the coordinators. Each control process limits its communication of
control information to its local group; the coordinators also communicate with
the coordinator group. The frequency of control messages is regulated using
a simpli�ed version of the congestion control algorithm used by RTCP [20]
which works to keep the bandwidth used by the messages to a constant.

A self-determination protocol is executed periodically to determine whether
a control process in the hierarchy should change states (child to coordinator

13



or vice versa) in response to changes in the system. The determination of a
state change is a local decision made at each control process based on control
information gathered before the self-determination protocol is executed, and
based on a prede�ned set of rules adapted from [21].

A control process, upon startup, checks to see how many coordinators are
present in the hierarchy, by checking the messages sent in the coordinator
group. 2 If the number of coordinators is less than or equal to the expected
average coordinator group size or the control process does not receive a control
message from the coordinator group within a given time, the control process
starts up as a coordinator. Otherwise, the control process starts up as a child.

A control process, starting up as a coordinator immediately starts sending
control messages. A control process, starting up as a child, needs to �nd a
coordinator that will accept it into its local group. This step is accomplished
by using an expanding ring search. When it �nds a coordinator, the control
process starts sending messages to the coordinator's local group and becomes
a child. If the expanding ring search doesn't provide a coordinator within a
given time, the control process starts up as a coordinator.

The detection of control process faults is accomplished via a fault-detection
algorithm that runs periodically. If the information from a control process
has not been updated recently, the control process is removed from the data
structures and thus removed from this control process's view of the member-
ship of the hierarchy. When a fault regarding the coordinator for this control
process is detected, the control process uses the information from the self-
determination protocol to decide whether it should �nd another coordinator
and remain a child, or whether it should become a coordinator.

Global control traÆc from all control processes is gathered using the hierarchy.
The control information is aggregated as it is gathered through the InterGroup
control hierarchy, thus limiting the control information message size.

8.1 Determining the Distance Between Processes

The distance or latency between processes is used in the timer calculations of
the reliable multicast. It is important to have a good estimate of this value
to avoid duplicate retransmission requests and message retransmissions. The
structure of the hierarchy allows a good estimate of the latency while main-
taining scalability.

The distance between any two processes is calculated using a simpli�ed version

2 Only one message is necessary to make this determination.

14



of the NTP [17] algorithm. Each control message includes a local timestamp,
that records when the message was sent. Process A sends a control message
msg that contains a local timestamp T1. When process B receives msg, it
records its local timestamp T2, stores the timestamp pair T1; T2 and asso-
ciates it with A. Process B then sends another control message msg0 that
contains a local timestamp T3 and the timestamp pair associated with pro-
cess A (T1; T2). Upon receiving msg0, process A records its local timestamp
T4 and can calculate the one-way distance to process B as:

distanceA;B = (T4� T3 + T2� T1)=2

This calculation of the distance assumes symmetric paths (which is not always
the case), but it does not assume synchronized clocks.

Within a local group the processes calculate the distance to every other pro-
cess in that local group. The coordinators do the same within the coordinator
group. Each coordinator then distributes its distance calculations for the co-
ordinator group to its local group members. Thus, the distance between mem-
bers of two di�erent local groups is approximated by the distance between the
coordinators of those local groups.

8.2 Message Bu�ers or Determining Message Stability

A message bu�er is used to store messages, so that they can be retransmitted
if necessary. Since we don't necessarily want to store every message in the
system, we need to determine when a message will no longer be requested for
retransmission. A message will no longer be requested for retransmission if
that message has been received by every process. Such messages are referred
to as stable messages. A stable message can be removed from the message
bu�er.

We provide a protocol that determines message stability for bu�er manage-
ment. It is based on the protocol in [5], that uses a timestamp acknowledgment
mechanism for stability determination. Each process keeps track of the times-
tamp of the most recent locally stable message delivered to the application. A
process determines that a message is locally stable if the InterGroup protocols
have �nished processing the message at that process. A process will make the
determination of local stability based on the delivery guarantee it chooses. A
message becomes stable in the process group when every process in the process
group has determined that the message is locally stable. The timestamp of the
most recent locally stable message is periodically communicated to the control
hierarchy which calculates and returns the timestamp of the most currently
(system-wide) stable message. All messages with timestamps smaller than this
value are marked as stable and removed from the process's message bu�er.

15



9 Securing a Group Communication System

When communicating over an open network like the Internet, security is es-
sential to allow application components to reliably communicate in the face
of adversaries. The Secure Group Layer protocol (SGL) [1] adapts the notion
of view-based group communication to the context of security. SGL provides
distributed applications with a platform they can use to achieve reliable and
secure communication among distributed components.

SGL is a security protocol for reliable multicast communications designed to
be similar to the well-know SSL protocol [12]. The SSL protocol builds on
the lower-layer protocol TCP to establish a secure channel between a client
and a server. SSL provides a secure two-party channel with FIFO-ordering
of messages and additional security services such as con�dentiality, authen-
tication and integrity. Similarly, the SGL protocol builds on the InterGroup
group communication system to establish a secure multicast channel between
application components distributed over the Internet. The resulting secure
multicast channel provides application programmers with the basic properties
of reliable multicast communication systems in terms of group membership,
and multicast security services.

The dependence of SSL on a lower-layer protocol makes it vulnerable to some
attacks against TCP/IP [14] however SSL renders these attacks either harm-
less or limits them to denial of service. In a similar way, SGL renders attacks
against the InterGroup system either harmless or limits them to denial of
service.

SGL builds a secure multicast channel by �rst establishing a session key among
the authorized application components through a group DiÆe-Hellman key
exchange. The group DiÆe-Hellman protocols [7,8] are designed to achieve
strong security requirements and to provide an authorized set of users in a
multicast group with a secret session key. These protocols do not rely on a
centralized key distribution center. Once a session key has been established,
SGL uses it with symmetric cryptographic algorithms to achieve multicast
message con�dentiality and multicast data integrity.

The InterGroup group communication system supports groups with a small
number of senders and a comparatively large number of receivers. The group
DiÆe-Hellman scheme has been designed to provide a session key to the smaller
group of senders; it does not provide a session key to the receiver group.
Dissemination of the key to the receivers will require an extension to the
group DiÆe-Hellman scheme. The new key exchange scheme will combine
both the group DiÆe-Hellman key exchange for the sender group and a group
key distribution scheme for the receivers. After the senders have established a

16



session key, the control nodes (i.e. sender group) will use the key distribution
scheme to disseminate this key to the receiver group.

10 Conclusion and Future Work

The goal in designing the InterGroup protocols has been to provide the appli-
cation services of group communication systems in a wide-area environment
with a large number of participants, prone to large latencies and frequent
faults, such as the Internet. To accomplish this, InterGroup takes a slightly
di�erent approach to group membership, delivery services and control infor-
mation exchange.

The InterGroup protocols take a scalable approach to membership protocols,
while maintaining consistent message ordering and delivery within groups. A
cornerstone of the InterGroup approach is the recognition that the message
order and reliability constraints of a group communication system can be
met by keeping only the processes currently sending messages in the group
membership. The membership protocols require only the sending processes to
participate in expensive group-wide decisions.

We also step away from the traditional approach of having the sender of a
message choose the delivery service. Instead, we provide more 
exibility to the
application by allowing each process to choose a delivery service independent of
the other processes in the group. This approach allows processes that cannot
meet the desired system quality of service to still participate in the group,
using a weaker delivery service, and improves scalability of the system.

The InterGroup control hierarchy provides scalable mechanisms for gathering
and distributing information within the group. We have shown how two types
of information, distances between processes and acknowledgments, are shared
in the InterGroup system. This hierarchy can be easily enhanced to exchange
additional information if the need arises.

We have designed the architecture to contain four major components: a control
information service, a reliability service, a delivery service, and a membership
service. We have released an alpha version of the InterGroup protocols that
implements the basic InterGroup mechanisms, and continue to augment and
enhance the implementation.We are currently undertaking studies of the theo-
retical aspects of the protocols in order to better understand the consequences
of our design. We are also measuring the performance of our implementation
in order to investigate the performance and scalability characteristics.

17



References

[1] D. A. Agarwal, O. Chevassut, M.R. Thompson, and G. Tsudik. An Integrated

Solution for Secure Group Communication in Wide-Area Networks. In Proc. of

6th IEEE Symposium on Computers and Communications, 2001.

[2] D. A. Agarwal, L. E. Moser, P. M. Melliar-Smith, and R. K. Budhia. The Totem

multiple-ring ordering and topology maintenance protocol. ACM Transactions

on Computer Systems, 16(2):93{132, May 1998.

[3] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication

subsystem for high availability. In Proceedings of the 22nd IEEE International

Symposium on Fault-Tolerant Computing, pages 76{84, New York, NY, July

1992.

[4] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella.

The Totem single-ring ordering and membership protocol. ACM Transactions

on Computer Systems, 13(4):311{342, November 1995.

[5] K. Berket, R. Koch, L. E. Moser, and P. M. Melliar-Smith. Timestamp

acknowledgments for determining message stability. In Proceedings of the 2nd

International Conference on Parallel and Distributed Computing and Networks,

Brisbane, Australia, December 1998.

[6] K. P. Birman and R. Van Renesse, editors. Reliable Distributed Computing with

the Isis Toolkit. IEEE Computer Society Press, 1994.

[7] E. Bresson, O. Chevassut, and D. Pointcheval. Provably Authenticated Group

DiÆe-Hellman Key Exchange { The Dynamic Case. In Proc. of Asiacrpt'01,

Dec 2001.

[8] E. Bresson, O. Chevassut, D. Pointcheval, and J. J. Quisquater. Provably

Authenticated Group DiÆe-Hellman Key Exchange. In Proc. of the 8th ACM

Computer and Communications Security, Nov 2001.

[9] V. G. Cerf and R. E. Kahn. A protocol for packet network intercommunication.

IEEE Transactions on Communications, 22(5):647{648, May 1974.

[10] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. A reliable

multicast framework for light-weight sessions and application level framing.

IEEE/ACM Transactions on Networking, 5(6):784{803, December 1997.

[11] I. Foster and C. Kesselman, editors. The Grid, Blueprint for a New Computing

Infrastructure. Morgan Kaufmann Publishers, Inc., 1998.

[12] A. Freier, P. Karlton, and P. Kocher. The SSL Protocol Version 3.0, November

1996.

[13] K. Guo and L. Rodrigues. Dynamic light-weight groups. In Proceedings of the

17th IEEE International Conference on Distributed Computing Systems, pages

33{42, Baltimore, Maryland, May 1997.

18



[14] B. Harris and R. Hunt. TCP/IP Security Threats and Attack Methods.

Computer Communicastions, Elsevier, 22(10):885{897, 1999.

[15] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev. A client-server oriented

algorithm for virtually synchronous group membership in WANs. In Proceedings

of the 20th IEEE International Conference on Distributed Computing Systems,

pages 356{65, Taipei, Taiwan, April 2000.

[16] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558{565, July 1978.

[17] D. L. Mills. Network time protocol (version 3) speci�cation, implementation

and analysis. IETF Request for Comments: 1305, March 1992.

[18] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended

virtual synchrony. In Proceedings of the 14th IEEE International Conference

on Distributed Computing Systems, pages 56{65, Poznan, Poland, June 1994.

[19] L. E. Moser, P. M. Melliar-Smith, R. K. Budhia D. A. Agarwal, and C. A.

Lingley-Papadopoulos. Totem: A fault-tolerant multicast group communication

system. Communications of the ACM, 39(4):54{63, April 1996.

[20] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport

protocol for real-time applications. IETF Request for Comments: 1889, January

1996.

[21] P. Sharma, D. Estrin, S. Floyd, and L. Zhang. Scalable session messages in

SRM using self-con�guration. Technical Report 98-670, USC, February 1998.

[22] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and D. Karr. Building

adaptive systems using ensemble. Software: Practice and Experience, 28(9):963{

979, July 1998.

[23] R. van Renesse, K. P. Birman, and S. Ma�eis. Horus: A 
exible group

communication system. Communications of the ACM, 39(4):76{83, April 1996.

[24] B. Whetten, T. Montgomery, and S. Kaplan. A high performance totally

ordered protocol. In Proceedings of the International Workshop on Theory

and Practice in Distributed Systems, pages 33{57, Dagstuhl Castle, Germany,

September 1994. Springer-Verlag.

19


