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Chapter 1

Introduction

Through a myriad of applications, including electronic mail, WWW, and elec-
tronic commerce, computer networks play an increasingly important role in many aspects
of our lives. Security incidents like the Melissa macro virus [11], the “smurf” ICMP! denial
of service attacks [9], the IP spoofing and TCP connection hijacking [8], and the Morris’
Internet worm [65], demonstrate how vulnerable current computer systems and networks
are to attacks. The costs of security breaches can be very high: unauthorized information
disclosure, loss of data integrity, and system degradation or unavailability. Thus network
security becomes crucial.

Most of the existing network security work concerns confidentiality, data integrity,
user authentication, and non-repudiation all on an end-to-end basis. In contrast, protecting
the underlying network infrastructures has received little attention until recently—when
we have become more aware of how vulnerable our existing network infrastructures are
to attacks and of their severe impacts. End-to-end security can be foiled by attacks that
exploit vulnerabilities in the network infrastructures. For example, a compromised router
can drop packets to cause denial of service. In this dissertation, we describe our work
on protecting two core components of network infrastructures—routers and domain name
systems—both of which are security critical.

Attacks on routing infrastructures can be classified as follows: packet generation
(e.g., masquerading as a certain host or router to send forged packets), packet alteration

(e.g., modifying link state information of routing control packets or modifying data packets

ICMP stands for “Internet Control Message Protocol”, an integral part of the Internet Protocol (IP)
that handles error and control messages.



in transit), packet removal (e.g., dropping routing control packets or data packets to cause
denial of service), misrouting (e.g., routing packets in the “wrong” direction so that they
will take longer or forever to reach their destinations), and breach of confidentiality (e.g.,
performing traffic analyses or eavesdropping on data packets).

The use of tools like Secure Sockets Layer (SSL), Pretty Good Privacy (PGP), and
Secure Shell (SSH) has become widespread for protecting the confidentiality and integrity
of data packets. For example, web browsers are equipped with SSL to enable secure
information transmission (e.g., sending credit card numbers) from a machine to another
over an insecure network. However, using encryption and message authentication schemes
on an end-to-end basis cannot prevent data packets from being removed or misrouted in
the network. To fill this gap, we present protocols that detect and respond to misbehaving
routers to protect packets from denial of service attacks.

Routers exchange control packets to inform other routers about their status (e.g.,
up/down link states and link costs?). Based on the routing control packets received, a
router computes a routing table that is used to forward incoming packets toward their
destinations. Usually there is no need to protect the secrecy of routing control packets.
However, protecting the integrity and the authenticity of these control packets is security
critical. If an attacker can successfully forge or modify routing control packets, the routers
that use the incorrect information in those control packets may route packets incorrectly.
As a result, packets may suffer from long delays or may not reach their destinations. To
protect the integrity and the authenticity of routing control packets, message authentication
schemes have been proposed for routing protocols. Previous work either is very expensive
computationally (e.g., public-key based message authentication schemes) or has certain
limitations (e.g., the maximum clock skew among routers must be bounded by a specified
threshold). We present an efficient message authentication scheme for link state routing
that does not have these limitations.

In a domain name system (DNS), distributed name servers collaborate to provide
name service (e.g., mapping host names to IP addresses). Many network applications, such
as file transfer, remote login, WWW, and electronic mail, depend on DNS in a security

related fashion. For example, if an attacker can cause a client to use incorrect DNS data,

*There are different cost metrics (also called distance metrics) for routing protocols: for example, all
links have the same cost, the cost of a link depends on its bandwidth capacity, or the cost of a link depends
on the bandwidth available.



the client may not be able to obtain the IP address of a mail server and thus cannot com-
municate with it. In other words, DNS attacks can cause denial of service. As another
example, if the DNS mapping for www.cnn.com is compromised, an attacker may be able
to direct web browsers looking for the news web site to one that gives out counterfeit news.
If the web browser does not authenticate the server, the user may use the counterfeit news
as if they were genuine. Some applications (e.g., Unix rlogin) use name-based authenti-
cation. Attacking DNS could change the name-to-address mapping, and hence may allow
an attacker’s machine to masquerade as a trusted machine. Qur approach for protecting
DNS is driven by formal specifications. We develop formal specifications to characterize
DNS clients and DNS servers and to define a security goal: A DNS server should only
use DNS data that are consistent with those disseminated by the corresponding authorita-
tive sources. We present a DNS wrapper, also characterized by formal specifications, that
enforces the security goal.

We call our approach intrusion tolerance because it is based on prior work on
intrusion detection and fault tolerance. Intrusion detection (e.g., [18, 27, 38, 46]) is a
retrofit approach to improve the security of computer systems and networks. Intrusion
detection systems detect and report security policy violations. To live with the existing
systems and network infrastructures (i.e., the legacy system problem), intrusion detection
improves their security with minimal changes to them. Because of the huge costs and the
difficulties in building useful yet secure systems, we may not be able to replace the existing
(insecure) computer and network systems by secure systems in the near future—or perhaps,
never.

In an advanced fault tolerant system, the handling of an error can involve the
following steps: error detection, damage assessment, reconfiguration, and recovery. Cur-
rent attempts at intrusion detection are much less ambitious, typically relying on attack
detection that triggers a message to be sent to a security officer. Thereafter it is the re-
sponsibility of the human security officer to deal with the situation, e.g., to remove an
offending user or site, to request additional audit logs for a particular user, or to save audit
logs as evidence. We envision that human intervention at this level will not be feasible for
much longer, particularly when long delays for human response have high costs, and attacks
may rapidly propagate. Our work is a first step towards an expansive view of intrusion
detection, which includes detection of security policy violations, system diagnosis for iden-

tifying misbehaving components, and automated response (e.g., system reconfiguration) to



prevent propagation of an attack or to restore the operational status of the system.
The main contributions of this dissertation towards this new goal for intrusion

detection are summarized as follows:

e Presents an intrusion tolerance approach for protecting two key components of net-
work infrastructures, namely routers and domain name systems: Detection is only a
part of the control loop. Our approach includes detection, diagnosis, and response.
Formalism is an integral part of our approach, which includes modeling of system
components, characterizing system components using formal specifications, and prov-
ing properties of the solutions. Most of the existing intrusion detection works are
ad-hoc in nature; it is difficult to assess the benefits of deploying those solutions. We
hope our work can serve as a stepping stone towards a methodology that employs

formalism to achieve a higher level of assurance for detection-based solutions.

e Presents a first detection-based message authentication scheme®: Our message au-
thentication scheme is up to two orders of magnitude faster than an MD5/RSA dig-
ital signature scheme. Detection-based approaches are conventionally considered as
the second line of defense. We show that when prevention-based approaches are too
expensive or restrictive to use, a detection-response approach may be an attractive

alternative.

o Presents techniques and protocols to detect and respond to routers that maliciously
drop or misroute packets*: This is an initial detection-based approach for protecting
routing infrastructures from denial of service attacks. Based on reasonable assump-
tions, we prove important properties of our protocols regarding soundness (i.e., no
false positive), completeness (i.e., no false negative), and responsiveness (i.e., ability

to restore the operational status of a network).

e Presents a wrapper-based solution to protect DNS: Our security goal for DNS is to
ensure that protected DNS servers only use DNS data that are known to be consis-
tent with those disseminated by the corresponding authoritative servers. We employ
formal specification to describe DNS servers and our DNS wrapper, used to filter

out DNS messages destined for a protected server that may cause violations of our

3An earlier version of this message authentication work was published as [14].
4 An earlier version of this work for protecting routing infrastructures from denial of service was published
as [15].



security goal. Based on the specification of the DNS wrapper, we implemented a
DNS wrapper prototype and evaluated its performance. Our experimental results
show that the DNS wrapper is effective against cache poisoning attacks and certain
spoofing attacks, and the wrapper does not have a significant impact on the name

server response time and the CPU overhead.

The outline for the rest of this dissertation is as follows. Chapter 2 describes
our efficient message authentication scheme for link state routing. Chapter 3 presents our
techniques and protocols for protecting routing infrastructures from misbehaving routers
that drop packets incorrectly or misroute packets. Chapter 4 describes our scheme for
protecting domain name systems. Chapter 5 concludes this dissertation and suggests future

work.



Chapter 2

An Efficient Message
Authentication Scheme for Link

State Routing

2.1 Introduction

Routers exchange routing control packets to share their current states. Based
on these control packets, routers construct their routing tables to efficiently forward pack-
ets from source to destination. If routing infrastructure components (such as routers or
inter-router links) are faulty, misconfigured, or compromised, then the exchange of routing
control packets may be affected, resulting in improper or incorrect routing in the net-
work. In particular, the network may suffer from degradation of service, unavailability, or
misrouting of packets.

Potential attacks on routing infrastructures can be classified as follows:

e Packet generation: A router masquerades as a different router to send erroneous
control packets, replays stale control packets, or floods the network with excessive

control or data packets.

e Packet alteration: A router modifies control or data packets in transit. For example,

the cost, the ordering, or the freshness information of control packets may be altered.

e Packet removal: A router removes control packets to prevent information about net-



work changes from propagating to other routers, or removes data packets in transit

to effect denial of service.

e Misrouting: A router misroutes control or data packets so that they will take longer

(or forever) to reach their destinations.

e Breach of confidentiality: A router eavesdrops data and control packets, or performs

traffic analysis.

To protect routing control traffic from some of these threats, approaches that
support data authenticity (used to provide both proof of data origin and data integrity),
ordering, and freshness of control packets have been proposed. Examples are Perlman’s
[50, 51] work on link state routing protocols, Finn’s [20] report on dynamic routing pro-
tocols, Kumar’s and Crowcroft’s [34] paper on inter-domain routing protocols, Murphy’s
and Badger’s [47] paper on OSPF, Smith’s and Garcia-Luna-Aceves’s [63] paper on BGP,
Hauser’s, Przygienda’s, and Tsudik’s [26] paper on link state routing, Sirois’s and Kent’s
[62] paper on Nimrod, and Smith’s, Murthy’s, and Garcia-Luna-Aceves’s [64] paper on
distance vector routing protocols.

This chapter presents an efficient message authentication scheme for protecting
control packets in link state routing. Previous work such as [50, 51, 47, 26] either is
very expensive computationally or has certain limitations, which will be discussed in Sec-
tion 2.2. We use a detection-diagnosis-recovery approach, which is intrusion detection
(e.g., [18, 38, 46, 27]) augmented with system diagnosis and reconfiguration (e.g., [52]).
This approach is also used in Chapter 3 and in Bradley, et al.’s paper [6, 7] on protecting
routing infrastructures from routers that incorrectly drop packets and misroute packets.
Our main goal is to minimize the cost of performing link state update authentication when
the network components function normally, which occurs most of the time. In our scheme,
a router r uses a key k and a symmetric-key based data authentication scheme (e.g., a
keyed-hash scheme) to sign a link state update. The link state update with the signature
is disseminated to all other routers. A receiving router optimistically accepts the routing
update as if it were authenticated. At a designated time!, router ~ will then release the
key k. When the key k arrives, the receiving router verifies the authenticity of the key
using a secure and efficient method called hash chaining [36]. Then the verified key will

!Section 2.3.4 discusses how to choose a safe key release time so that an attacker cannot use the released
key to successfully forge control packets.



be used to verify the authenticity of the link state update using the symmetric-key based
data authentication scheme. Note that signature generation and verification can be done
using a symmetric-key based data authentication scheme, which is orders of magnitude
more efficient than a digital signature scheme. If erroneous routing updates are detected,
a distributed diagnosis protocol will be activated to locate the misbehaving routers. Then
network reconfiguration will be performed to logically disconnect those routers to restore
the operational status of the network.

This chapter is organized as follows: Section 2.2 reviews related work on link
state update authentication. Section 2.3 details and analyzes our scheme, called optimistic
link state verification. Section 2.4 compares our work with related work, and discusses

variations and limitations of our scheme.

2.2 Background: Link State Update Authentication

In link state routing?, every router constructs link state updates® (LSUs) that
describe the status of the links incident to the router, and distributes those updates to
all other routers. As networks are generally not fully connected, a technique known as
flooding is used for LSU distribution. When a router receives an LSU that it has not
received previously, the router forwards the LSU (essentially) unchanged to its neighbors,
except the one from which the LSU was received. To make flooding more robust, a router
sends an acknowledgement to the neighbor from which it receives an LSU. If the sender
does not receive an acknowledgement after a certain time threshold, it will re-transmit the
LSU. Based on the LSU received, a router computes the shortest paths to all destinations.
Because those computations are performed independently by all routers on the same set of
LSUs, networks using link state routing converge to a stable state quickly (as opposed to
distance vector routing). To protect routers from using erroneous LSUs to compute their
routing tables, data authentication is needed to cope with forged LSU generation and LSU
modification. Specifically, an attacker may masquerade as a particular router and generate
a forged LSU. Moreover, an LSU may be modified by a compromised intermediate router
or an active inter-router link attack.

Data authentication schemes can be broadly classified as symmetric-key based and

*Examples of link state routing protocols are OSPF [45], IS-IS [28], a proprietary protocol used in the
Internet core system known as SPREAD, and a proprietary routing protocol used in the ARPANET [40].
3Link state updates are also called link state advertisements.



asymmetric-key based. In a symmetric-key based data authentication scheme, also called
a message authentication code (MAC) scheme, a message is signed and verified using the
same key. To use a direct MAC scheme for LSU authentication on a network that has n

* each router needs to maintain (n — 1) keys® and the network as

routers, in the worst case
a whole needs to maintain O(n?) keys. Moreover, every router would need to sign and to
send (n—1) LSUs—one for each router—instead of one LSU as in existing link state routing
protocols. Because a router cannot verify the authenticity of LSUs not destined for it, a
misbehaving router could send different LSUs to different routers, causing inconsistency
problems such as routing loops. Thus a direct MAC scheme for LSU distribution is both
insecure as well as expensive in terms of processing and network bandwidth overheads.
Perlman’s seminal work [50, 51] uses an asymmetric-key based scheme, also called
a digital signature scheme, for data authentication in LSU distribution and public key
distribution. In a digital signature scheme, a message is signed using a private key and
verified using the corresponding public key. Murphy and Badger [47] proposed a design,
based on digital signatures, to securely distribute LSUs and public keys in OSPF. A digital
signature scheme seems to be a good candidate for solving the LSU distribution problem—
only O(n) key-pairs are needed for the entire network, and a signed LSU can be verified
by all routers. However, as pointed out in [47], it may be very expensive® to generate
and to verify digital signatures. The number of signatures needed to be verified by a
router depends on several factors: the number of routers in the network, the grouping of
routers into neighborhoods/areas”, the frequencies of link state changes and LSU refreshes,
the number of internal and external distinguishing subnets®, and the particular routing
protocol used. In OSPF, because the route to each external subnet is advertised in a

separate LSU, there may be tens of thousands of those LSUs. To relieve the performance

4Partitioning a large network into neighborhoods could reduce the number of keys stored in a router be-
cause (most) routers in different neighborhoods do not need to exchange their link states directly; designated
routers of every neighborhood exchange LSUs among themselves.

5A direct MAC scheme that does not employ pairwise-keys is not suitable for LSU authentication.
Specifically, using a shared key for all routers, or having routers share a key with each of their neighbors and
using hop-by-hop LSU authentication cannot protect the network from compromised intermediate routers.
The former is used in OSPF version 2[45] cryptographic authentication; routers on a network/subnet uses
a secret shared key and a MAC scheme to authenticate routing protocol packets.

SExperimental results [47] show that it takes at least 270 microseconds to verify an RSA [57] signature
with the 512-bit key size using a SPARC-20 and the GNU MP library.

"An area is a set of connected networks, hosts, and routers.

8A subnet is internal if the subnet and the router reside in the same autonomous system and external
otherwise.
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impact, Murphy and Badger suggested a few possibilities: (1) using extra hardware in
routers to offload LSU signing and LSU verification; (2) changing the OSPF protocol to
reduce the frequency of performing LSU verification by packing external routes from the
same area in larger aggregates; (3) verifying LSU signatures periodically or on demand.
Our work explored the last option.

Hauser, Przygienda, and Tsudik [26] presented a scheme to reduce the cost of
LSU authentication. Their scheme is based on a technique called hash chains, which
was proposed by Lamport [36]. A hash chain of length £ is a list [H(r), ..., H!(r),
..., HY(r), H%(r)], where r is a secret quantity, H is a one-way hash function, and
H&H(r) = H(H ' (r)). Tf HY(r) can be sent to a verifier securely, the authenticity of
H%(r) can be verified by applying the function H to H%(r) i times, where 1 < i < £—1.
Examples of proposed one-way hash functions are MD5 [56] and SHA [48]. In Hauser, et
al.’s scheme?, two hash chains with different seeds Tup and rggy,y, are used to represent the up
and down state of a link. The originating router uses its private key to sign a message that
includes H e(rup), HY(74own), and the current time 7' and floods the message. A receiving
router can verify the authenticity of that message using the public key of the originating
router. Let A be the time interval between consecutive LSU releases. At time T + 1A, the
originating router releases either H e_i(rup) or H*(r4oun ), depending on the status of the
link. This scheme virtually eliminates the need to perform expensive public-key encryption
and decryption. Signing and verifying digital signatures are replaced by applications of a
hash function, which are orders of magnitude faster. Despite the cost reduction, there are
a few drawbacks to the scheme. First, the scheme cannot efficiently handle multiple-valued
link states because the costs of generating, verifying, and storing many hash chains may be
higher than those of using digital signatures [26]. The need for multiple-valued link states
arises when link costs depend on traffic load, and when a border router advertises link

0 or in other areas within

costs for destinations that reside in other autonomous systems'
the same autonomous system. Second, Hauser, et al. showed that the maximum clock skew
among routers must be less than 3A. Otherwise, an adversary may be able to forge an
incorrect LSU that is considered to be fresh and authentic by some routers. Finally, the

scheme is not suitable for handling frequent link state changes because the hash chains are

“Hauser, et al. also presented a variation of their scheme for a relatively stable network. See [26] for
details.

10An autonomous system is a group of networks and routers under the control of a single administrative
authority.
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pre-computed assuming certain fixed time intervals between consecutive LSUs. Choosing
A to be a very small quantity has two problems—the originating router needs to generate
and to store long hash chains, and routers have to be very tightly synchronized (c.f., the

clock skew problem discussed above).

2.3 Optimistic Link State Verification

Our approach is inspired by work done in the fault tolerance community—error
detection, diagnosis, and recovery, specifically. Our scheme is called optimistic link state
verification (OLSV). OLSV, like a digital signature scheme, enables a router, say p, to
disseminate a signed LSU that can be verified by other routers. Moreover, no other routers
can successfully forge p’s LSU. OLSV is much more efficient than a digital signature scheme
when the network infrastructure is not compromised (which is the common case), yet OLSV
does not have the limitations of other schemes (e.g., [26]), discussed in Section 2.2.

In OLSV, a receiving router optimistically accepts an LSU before it can be verified.
At a designated time, the key used to sign this LSU will be released. In Section 2.3.4, we
discuss how to choose a safe key release time so that an attacker cannot use the key to
successfully forge control packets. When the router receives a key used to authenticate the
LSU, it will first verify the authenticity of the key using hash chaining. The verified key
is then used to verify the authenticity of the LSU using a MAC scheme. If the verification
process detects an erroneous LSU, the receiving router reports from which neighbor(s)
that erroneous LSU was received. A distributed diagnosis protocol is activated to identify
the misbehaving router(s); we will discuss how link attacks are handled later. Based on
the diagnosis result, the misbehaving router(s) are logically removed from the network to

restore its operational status.

2.3.1 Assumptions

We consider a network of routers that use a link state routing protocol. We use a
graph G to represent the network, with vertices representing routers and edges representing
communication links. If two routers share a link, we call them neighbors. A router that
correctly executes the routing protocol is called a good router; otherwise, it is called a bad
router. A router may be bad due to a software/hardware fault, a misconfiguration, or a

malicious attack. A failed/compromised link is called a bad link; otherwise, it is called
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a good link. For example, an attacker may compromise a link between two routers by
modifying routing control packets sent over it. An LSU includes several fields: originating
router id, sequence number, age, and link state data. The sequence number field is used
to provide an ordering among LSUs. With a protected sequence number field, replay and
reordering attacks can be detected. The age field is used to support freshness; stale LSUs
can be prevented from propagating in the network. A router increments the age field of an
LSU before forwarding it to its neighbors. Because the age of an LSU needs to be modified
by intermediate routers, the age field is excluded in LSU authentication computation. We

make the following assumptions:

1. The network remains connected after the removal of bad routers and bad links.

2. There exists a secure public-key distribution protocol. Perlman [50, 51] and Murphy
and Badger [47] proposed security protocols for distributing the public keys of routers.

OLSV assumes that every router knows the public keys of all routers.

3. Every router has a local clock, and the maximum clock skew between any two good
routers is bounded by a quantity, say €. That is, the difference between the clocks of
any two routers is less than or equal to € at any time. A secure network time protocol
may be used to synchronize the clocks of routers to bound the maximum clock skew.
Moreover, we assume that the ratio of clock rates!! (or clock frequencies) between
the fastest clock and the slowest clock among good routers is bounded by a quantity,

say «.

4. The total delay—propagation, queueing, and processing delays—for sending a packet

using flooding is bounded by a quantity, say d.

5. There are no adjacent bad routers. This assumption is used to simplify the description

of OLSV. We will discuss how this assumption can be removed in Section 2.4.

6. There exists a one-way hash function. Examples of proposed one-way hash functions
are MD5 and SHA. We use H to denote a one-way hash function. Given a random

quantity y, it is computationally infeasible to find z such that y = H(x). Moreover,

'We use Lamport’s definition of clock rate [35]: Let C(t) denote the value of the clock C at physical
time t. (A discrete clock can be modeled by a continuous function with an error of up to 1/2 “tick”.) If
we assume that C(t) is a continuous and differentiable function of ¢, then the rate of clock C' at time ¢ is
represented by dC(t)/dt.
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for a random quantity z, it is computationally infeasible to find an z’ # z such that

H(z) = H(z').

7. There exists a cryptographically strong random number generator: The generated

numbers are unpredictable, are uniformly distributed, and have long cycles.

8. A secure digital signature scheme is used. Digital signatures can be generated using
a cryptographic hash function and a public-key cipher such as MD5 and RSA. We
denote the digital signature of a message m signed using p’s private key by S,(m).
Without knowing p’s private key, it is computationally infeasible to generate Sp(m’)

for a new message m/'.

9. A secure MAC scheme, which includes a MAC generator MACG, is used. Tsudik’s
[68] keyed-hash scheme and HMAC [33] are examples of MAC schemes. Moreover,
they are significantly less expensive than digital signature schemes such as MD5/RSA.
We use M ACG(m) to denote the MAC generated by MACG using a key k on a mes-
sage m. Without knowing k, it is computationally infeasible to generate M ACG(m/')

for a new message m/'.

2.3.2 Protocol Overview

Our OLSV protocol is sub-divided into three parts, namely sender, receiver, and
recovery. Every router runs a sender process, a receiver process, and a recovery process.
The sender process generates keys and uses them to generate a MAC for every LSU.
These LSUs and the associated MACs are then flooded to other routers as in existing
link state routing protocols. The keys are released to other routers at designated times.
Section 2.3.3 details the sender process. The receiver process optimistically accepts LSUs
(as if they were authenticated) and uses them to compute the local routing table. When
the corresponding keys arrive, the receiver process verifies the authenticity of the LSUs
received. Section 2.3.4 details the receiver process. When the receiver process detects an
erroneous LSU, the recovery process is activated. A recovery process is responsible for
diagnosis and reconfiguration. Diagnosis is used to locate misbehaving routers. Based
on the diagnosis results, reconfiguration is used to logically disconnect those misbehaving
routers from the network to restore its operational status. Section 2.3.5 details the recovery

process. The recovery process is designed to counter router attacks. To counter “active”
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link attacks'?, neighboring routers use a MAC scheme to authenticate LSUs forwarded
between them'2. Because a router usually has few neighbors, a secret key can be manually
set up or established using a key-exchange protocol for each neighboring router pair, and
many existing efficient MAC schemes are applicable to authenticate LSUs sent between
neighboring routers. For the sake of clarity, we omit this LSU authentication between

neighboring routers in the subsequent description of our protocol.

2.3.3 Sender Process

The sender process generates keys using hash chaining, signs LSUs, and distributes
keys and signed LSUs to other routers.

Before a router can sign LSU, the sender process generates a random quantity
r and constructs a hash chain of length £ using r and a one-way hash function H. Then
the sender process composes a key-chain anchor (KCA) message that contains the router
id, the current time 7', and Hz(r) and signs it with the private key of the router. Then
the signed KCA message (id, T, H(r), Siq(id, T, H*(r))) is distributed to other routers via
flooding.

The quantities H**(r), where 1 < i < £, are used as keys to generate MACs
for LSUs. A hash-chained key (HCK) message (id,, H*%(r)) is released to other routers
at time T + A, where A is the time interval between consecutive key releases. In fact,
the sender process only needs to release an HCK if the corresponding H e*i(r) is used to
generate a MAC.

To make OLSV secure, H¢7%(r) is used to generate MACs for LSUs only before
time T + iA — 7, where 7 is a value that we will derive later. When the sender process
wants to send an LSU at time ¢, where T+ (i — 1)A —7 <t < T+ A — 7, it uses H 7' (r)
as the key to generate the MAC. The signed LSU message (LSU, i, MACG pe-i(,y(LSU, 1))
is then flooded to other routers. Figure 2.1 depicts the chronological order of the actions

performed by the sender process.

1211 active link attacks, an attacker may remove, modify, or forge control packets sent over a link.

13As we will see, our scheme will still work even if we do not perform additional LSU authentication
between neighboring routers. Specifically, a link failure may be viewed as a router failure in OLSV. The
routers incident to a failed link will detect the failure and cease the neighbor relationship. Consequently, the
failed link will not be used. However, using a MAC scheme to authenticate LSUs sent between neighboring
routers can prevent link attacks without affecting the connectivity of the network.
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Figure 2.1: The Sender Process.



16

2.3.4 Receiver Process

The receiver process determines if a signed LSU is acceptable, verifies the authen-
ticity of keys received, and verifies the authenticity of signed LSUs received.

When the receiver process gets a KCA with a digital signature S;q(id, T, H(r)),
it verifies the authenticity of the KCA using the public key of router ¢d. A verified KCA
with T “reasonably” close to the current clock value of the router is accepted and stored.

The receiver process optimistically accepts (LSU, i, MACG pi-i()(LSU, 1)), a
signed LSU, if the receiving time is less than 7'+ iA — €. (Note that the router i¢d in LSU
can be used to determine the corresponding 7'.)

When an HCK message (id, 7, k) is received, the authenticity of the HCK is verified
by applying the hash function H to k one or more times. Similar to Hauser, et al.’s scheme,
the verification process is more efficient if the last verified HCK is stored and used. For
example, if the last verified HCK message (id,i — 1, H*"**1(r)) is stored, then verifying
the HCK message (id, i, k) only consists of computing H(k) and comparing H (k) with
H+1(r). Otherwise, it takes i applications of H to verify the HCK if the KCA (or H(r))
is used. A verified HCK message (id, i, H**(r)) is then used to verify the authenticity of
LSU. For a signed LSU message (LSU,i, mac), H**(r) is used to generate the MAC of
(LSU, i) and the resulting value is compared to mac. If erroneous LSUs are detected, the

recovery process is activated.

Theorem 1 If we set T > 2¢ + ad, then an adversary cannot generate an erroneous LSU
whose originating router id corresponds to a good router and have the erroneous LSU
accepted by good routers without being detected. Moreover, a good router always accepts a

signed LSU generated by another good router.

Proof: Recall that the originating router id releases the HCK message (id, i, H " (r))
at time T + 1A. At that time, the clock values of good routers are at least T + 1A — e.
By requiring good routers not to accept LSUs signed with H*(r) after T + iA — ¢, the
key H'*(r) will not be useful to an adversary to generate erroneous LSUs by the time
the adversary receives the HCK message. Note that r is a random quantity and H* 7 (r),
where i < j < ¢, are released after the time H® %(r) is released. Moreover, knowing
H**(r), where 1 < k < i, is not useful to determine H*~*(r). Thus the adversary cannot

determine H Z_i(r) in time to generate an erroneous LSU and have it accepted by a good
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router without being detected. When router id’s local time is 7"+ iA — 2¢, the clock values
of good routers are at most 7'+ iA — e. Thus having router ¢d to send the LSU signed with
H*(r) before T + iA — (2¢ + ad), all good routers will accept the LSU. O

2.3.5 Recovery Process

The recovery process locates misbehaving routers and reconfigures the network
to disconnect misbehaving routers from the network.

When erroneous LSUs are detected by the receiver process, a bad routing up-
date advertisement (BRUA) message (BLSU,i,pred) is constructed, where BLSU is a
“selected” erroneous LSU detected using the key H’*(r), and pred is the id of the neigh-
boring router from which BLSU is received. If multiple erroneous LSUs are detected using
H%(r), the one with the smallest sequence number is selected. Moreover, if more than
one erroneous LSUs are associated with the smallest sequence number, the one with the
largest checksum is selected. The BRUA is signed with the router’s private key and the
signed BRUA is then flooded to other routers.

Then the recovery process waits for 2ad time units to ensure the BRUAs from
other routers can reach itself. The 2ad time delay covers the time for the corresponding
HCK and the time for the BRUASs to reach every router. We assume that it takes the same
amount of time for every router to use the HCK to verify a LSU and to construct and sign
a BRUA. Otherwise, the waiting time should be increased accordingly to include the LSU
verification time and the BRUA signing time.

Based on the BRUASs received, the recovery process constructs a bad routing
update propagation (BRUP) graph. Each BRUP corresponds to one erroneous LSU. In the
case where multiple BRUASs corresponding to different erroneous LSUs are received, we use
the same arbitration rules—choose the erroneous LSU with the smallest sequence number
and use the checksums to break ties—to select one. A BRUA (BLSU,i,p) sent by ¢ is
represented by a labeled edge ¢ = p in the BRUP graph, where a is the age of BLSU when
q receives it from p.

Then the recovery process performs a depth-first search on the BRUP graph. The
search starts with the node that has the largest ¢d and has an outgoing edge. Moreover, if
the node has incoming edges, the age value associated with the outgoing edge is larger than

those of its incoming edges. Because each node has at most one outgoing edge and the
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age values are used to cope with loops, the procedure for finding the starting node is well
defined. The search continues until one of the following is encountered: (1) An edge ¢ = p
and p does not have an outgoing edge; (2) A path segment ¢ 3 p =3 0, where a2 < al; (3)
A node visited previously is reached. For the first two cases, (p, q) is recorded. The search
procedure is repeated starting with an unvisited node in the BRUP graph.

In case (1), ¢ claims that p sent ¢ the erroneous LSU. Moreover, p does not claim
that it received the erroneous LSU from a neighbor. Because link attacks are prevented
using a MAC scheme, we can infer that p or ¢ is a bad router. In case (2), ¢ claims that
p sent g the erroneous LSU with age a2. Moreover, p claims that o sent p the erroneous
LSU with age a1. Because p should increment the age field before forwarding the LSU to
g, as should be strictly larger than a;. Thus either p lies or ¢ wrongly accuses p of being
a bad router. By a case analysis, one can show that those two cases are sufficient to cover
all scenarios in which a bad router sends out the erroneous LSU.

Once bad routers are located, the routers respond by reconfiguring the network to
logically remove the bad routers. Specifically, when the diagnosis described above reveals
that p or ¢ is a bad router, the neighbor relationship between p and ¢ will be ceased by
the good router. (Because we assume that bad routers are not adjacent, either p or ¢ is a
good router.) If a bad router keeps sending out erroneous LSUs to its neighbors, the bad
router will eventually be disconnected from the network because the connectivity of the

bad router is decreased by one every time the router is diagnosed as bad by a neighbor.

2.3.6 An Example

Figure 2.2 depicts a network that has six routers R;, where 1 < ¢ < 6. Consider
that R; floods a signed LSU L to other routers. We assume that Ro is a bad router.
Instead of forwarding £, Ry forwards a modified LSU L' to its neighbors R3 and Rj.
Without knowing £’ is an erroneous LSU, Rj3 in turn forwards £’ to Rg. When the key
used to verify L is disseminated by R;, the erroneous LSU £’ will be detected. Rg will
send out a BRUA indicating £’ was received from R3. R3 and R5 will send out a BRUA
indicating £’ was received from Rs. Then a BRUP graph as shown in Figure 2.2 will be
constructed. Performing a DFS on the BRUP graph gives the following results: R or R3
is a bad router, and Ry or Rj is a bad router. Subsequently, R3 and R will cease their

neighbor relationship with Rs. Note that based on the BRUP graph, R; cannot determine
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whether R, is a bad router or its neighbors are bad routers. Thus R; does not disconnect
itself from Rs. However, if Ro continues to misbehave, R; will be able to determine that
Ry is a bad router. As a result, R; will cease its neighbor relationship with Rs, and Rp

will be completely disconnected from the network.

2.3.7 Cost Analysis

The major costs of our OLSV scheme are in the time to generate and to verify
digital signatures for KCAs and BRUAs, the time to generate and to verify MACs for LSUs,
the time to perform DFS on BRUP graphs, the storage required to store hash-chained keys,
the storage required to store LSUs that are yet to be verified, and the network bandwidth
for sending HCKs, signed L.SUs, and BRUAs.

Time: Because a KCA is generated and verified once for every £ LSU, the amortized cost
is very small. Our experiments, performed on a SPARC-5 running SunOS 4.1.3 and
using the RSAREF?2 library, show the following results: (1) Generating and verifying
a signature for a 16-byte block (i.e., the same size as an MD5 digest) using RSA with
the 512-bit key size takes 0.38 second and 0.033 second respectively. (2) Generating
an MD5 digest for a 512-byte block and a 16-byte block takes 240 microseconds and 52
microseconds respectively. The time to generate an MD5 digest roughly corresponds
to the times to generate and to verify a keyed-MD5 MAC. Thus the overhead of our
scheme is up to two orders of magnitude lower than that of an MD5/RSA digital
signature scheme for performing LSU authentication. Our main goal is to minimize
the performance impact of LSU authentication when the network operates normally,
which occurs most of the time. We argue that the cost of recovery (i.e., signing and
verifying BRUAs and performing DFS on BRUP graphs), performed only when the
network is under attack, is tolerable. Because signing and verifying BRUAs are the
dominant factors, the cost of recovery is comparable to that of a digital signature

scheme.

Storage: Every router needs to store a hash chain'* of length £. Note that MD5 produces
a 128-bit digest and SHA produces a 160-bit digest. Thus in practice one can choose

a large £. On the receiver process side, only the last verified HCK from each router

"“Note that Hauser, et al.’s scheme requires a router to maintain two hash chains for each link incident
on the router. Our scheme only requires one hash chain per router.
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needs to be stored. Thus the storage cost for the hash-chained keys may be tolerable.
Because a router needs to store the LSUs that are yet to be verified, a potential denial
of service vulnerability exists. To prevent a bad router from exhausting the memory
of a router by sending out excessive erroneous LSUs, one may impose a limit on how
frequently a router may forward LSUs originated by a particular router. In fact,
modern link state routing protocols such as OSPF impose a minimum elapsed time
between the times a router sends out successive link state advertisements. Another
technique is to store conflicting LSUs only—two or more LSUs conflict with each
other if they have different link state data but the same originating router id and the
same sequence number. When a router receives (erroneous) LSUs whose originating
router is the router itself and the sequence number is larger'® than the router’s
current sequence number, the router floods an LSU with the same sequence number
and the current link state data so other routers can detect a conflict. Note that only
conflicting LSUs that have the smallest sequence number are needed to be stored.
Moreover, among those LSUs that have the smallest sequence number, only the two
LSUs that have the largest checksums are needed. (We need to store two to ensure
that the erroneous LSU with the largest checksum is stored; the authentic LSU may
have the largest checksum.) As a result, a router only needs to keep an LSU for 2ad
time units (to ensure the LSU from the originating router can reach itself) instead of

7+ A + o time units to detect erroneous LSUs.

Network Bandwidth: The recurring extra network traffic is from HCK messages and
two fields in signed LSUs (i.e., an index and a MAC). An HCK and those two fields
in a signed LSU are about the size of a message digest. A BRUA is about the size of
a signed LSU. Again, a BRUA is sent only when the network is under attack. Thus

the extra network bandwidth needed in our scheme should be insignificant.

2.4 Discussion

In this chapter, we present an efficient message authentication scheme, called
OLSV, to secure link state routing. OLSV is based on a detection-diagnosis-recovery

approach. Previous approaches such as public-key based schemes either are very expensive

5Sending erroneous LSUs with old sequence numbers is not an effective attack because those LSUs will
not be used.
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computationally or have other limitations, which restrict their utility. Our results show
that OLSV is up to two orders of magnitude faster than an MD5/RSA digital signature
scheme. Consider a network that has 1000 routers. It takes only 0.292 second for a router
to verify a LSU (of size 512 bytes) from every router. Thus our scheme is scalable to handle
large networks.

Although both Hauser, et al.’s scheme and our OLSV scheme use hash chains as
a tool, they differ in how the hash chains are used. In Hauser, et al.’s scheme, hash chain
entries are used as signatures. In our OLSV scheme, hash chain entries are used as keys for
generating and verifying MACs. Our OLSV scheme has several advantages over Hauser, et
al.’s scheme. First, OLSV can efficiently handle multiple-valued link states. The need for
multiple-valued link states arises when link costs depend on traffic load, and when a border
router advertises (summarized) link costs for destinations that reside in other autonomous
systems or in other areas within the same autonomous system. Second, OLSV can be used
to handle very frequent link state changes. In OLSV, a hash-chained key can be used to
generate and to verify MACs for multiple LSUs. In Hauser, et al.’s scheme, consecutive
link state changes are at least A time units apart. Moreover, Hauser, et al.’s scheme may
not be able to use a small A (c.f. Section 2.2). Third, OLSV does not require € to be
smaller than a certain value. (Hauser, et al.’s scheme requires € < 3A.) However, we note
that there is a tradeoff between the tightness of clock synchronization and the time to
recover. It is because a signed LSU may be released 7 + A time units before the time the
corresponding hash-chained key is released. A future work item is to reduce the recovery
time of OLSV, especially when the routers are very loosely synchronized.

Independently, Wu, et al. [72] proposed an intrusion detection approach to secure
link state routing protocols. Their main idea is that a router generates a session key and
uses it to sign k LSUs. After the session key is used k times, the originating router will
sign the session key using its private key and send the signed session key to other routers.
Other routers can verify the authenticity of the session key using the public key of that
router. If erroneous LLSUs are detected, bad routers are identified using a statistical analysis
technique. Even though our OLSV scheme and Wu, et al.’s scheme use a similar approach,
our techniques and protocols are quite different. Among other things, our OLSV may be
able to detect attacks sooner than Wu, et al.’s scheme. Because generating and verifying
digital signatures are expensive, kK must be reasonably large. Thus the time between an

LSU is sent and the corresponding session key is released may be quite long, especially
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when link state changes are infrequent. Our OLSV, on the other hand, does not rely on
batch verification for cost reduction. A hash-chained key can be released every A time
units and A may be chosen to be quite small. Thus OLSV may be able to detect erroneous
LSUs and initiate the recovery process sooner.

In Section 2.3, we assume that there are no adjacent bad routers in the network.
We note that the recovery protocol can be extended to cope with adjacent bad routers.
After locating a suspicious router pair by performing DFS in a BRUP graph, we know
that at least one of them is misbehaving. If none of them ceases the neighbor relationship,
one can conclude that both of them are bad routers. The neighbors of those two routers
should disconnect themselves from those two routers in the next round. By repeating this
procedure, a good router that is adjacent to those bad routers will be able to determine
which neighbors are bad routers and cease its neighbor relationship with them.

Some techniques presented in OLSV are useful in other contexts. The basic idea
of optimistic verification is applicable in general to applications in which a subject needs
to authenticate data to many other subjects efficiently. For example, it can be used to
reduce the costs of Smith’s and Garcia-Luna-Aceves’s [63] scheme on securing BGP and
Smith’s, Murthy’s and Garcia-Luna-Aceves’s [64] scheme on securing distance vector rout-
ing protocols. If we remove “optimistic verification” from OLSV, we have an efficient LSU
authentication scheme that is applicable to a network with tightly synchronized routers'®.
Specifically, after a router receives a signed LSU, it will wait until the corresponding HCK
arrives. The authenticity of the HCK is then verified. Verified HCKs are used to verify
the authenticity of LSUs. Only verified LSUs are used to update the routing table. In this
case, we would not need to perform the recovery portion of the protocol. Similarly, our
techniques are also applicable to some lightweight secure multicast applications outside the
domain of routing. For example, contents providers may use our efficient message authen-
tication techniques to securely push news articles and stock quotes to a large number of

clients.

6 Tight synchronization among routers may be achieved using a secure network time protocol.
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Chapter 3

Protecting Routing Infrastructures

from Denial of Service

3.1 Introduction

To protect a network infrastructure, an efficient and secure message authentication
scheme is an important tool to enable secure routing control message exchange. However,
a compromised router can cause damage without using incorrect control messages—For
example, a misbehaving router may eavesdrop or remove data packets. Tools like Secure
Sockets Layer (SSL) are used to protect the privacy and the integrity of data packets. This
chapter concerns detecting and responding to some misbehaving routers that cause denial
of service.

When a network suffers from denial of service, packets cannot reach their desti-
nations. Existing routing protocols are not well-equipped to cope with denial of service; a
misbehaving router—which may be caused by software/hardware faults, misconfiguration,
or malicious attacks—may be able to disable entire networks. Because disabling networks
can have a huge impact (e.g., time-critical information cannot be communicated) on a large
number of people, networks are inviting targets for attack.

In this chapter, we present techniques and protocols for protecting network in-
frastructures from routers that incorrectly drop packets and misroute packets. Moreover,

we prove that our protocols have the following properties:

e A good router never incorrectly claims another router as a misbehaving router.
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e If a network has misbehaving routers, one or more of them can be located.
e Misbehaving routers will eventually be removed.

We use a detection-response (i.e., an “expansive” view of intrusion detection)
approach for protecting networks from denial of service. In our approach, routers coop-
eratively diagnose each other to detect, locate, and respond to misbehaving routers. The
idea of system diagnosis is not new; Preparata’s, Metze’s, and Chien’s seminal paper [52]
proposed a framework for automated system diagnosis. Our contribution is on designing
tests specifically for router diagnosis and proving their detection and response properties.
Basically, a “testing” router A sends a packet to a “tested” router B and verifies B’s be-
havior against its expected behavior. The verification problem includes two sub-problems:
determining B’s expected behavior and determining B’s actual behavior.

In a network that uses a dynamic routing protocol, B’s behavior depends on the
current state of the network. Moreover, A and B may not always share the same view
of the state. Thus A may not always know the expected behavior of B. We argue that
by concentrating on certain types of routing protocols (e.g., in link state routing, unlike
distance vector routing, a router propagates routing updates to its neighbors as soon as
it receives them) and careful test assignments (e.g., choosing A to be a direct neighbor of
B), A and B can see the same network state most of the time. (We will further justify
this point in Section 3.8.) This approximation appears to be necessary because of the
impossibility of constructing global states of distributed systems.

We assume that A can determine the expected behavior of B and focuses on the
second sub-problem (i.e., determining B’s actual behavior). There are two basic ways for
choosing “test” packets—mnormal traffic or packets created specifically for testing B. As we
will see later, these two strategies give rise to different diagnosis techniques, both of which
we consider. If A generates its packets to test B, a major issue is what packets A should
generate to uncover the bad behavior of B, if any. Solutions may not exist in all cases.
If we assume the worst-case scenario in which B could distinguish ordinary packets from
those test packets, B could misbehave only on ordinary packets to avoid being detected.
To further complicate the problem, unless the path traversed by a test packet does not
involve routers other than A and B, A may need to collaborate with other routers and
depend on their reports to diagnose B. Using multiple routers to test a router gives rise

to additional issues. First, if A uses reports from misbehaving routers for its analysis, it
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may incorrectly deduce that B is a misbehaving router or that B is a good router. Second,
the testing routers need to communicate among themselves without being affected by the
presence of misbehaving routers in the network.

We believe router diagnosis is an intractable problem if we assume the worst-case
adversary. We find that there are special cases that have practical significance and are in-
deed tractable. We develop a hierarchy of failure models that characterize the behavior and
the “strength” of misbehaving routers. For example, routers that misbehave permanently
and those that misbehave intermittently are in different failure classes, with the former
being a subclass of the latter. Based on those models, we design distributed diagnosis
protocols that detect and logically remove misbehaving routers. Once misbehaving routers
are located, the routers respond by reconfiguring the network to restore its operational
status. It is essential that misbehaving routers cannot misuse the network reconfiguration
capability to disconnect good routers or disable the networks. Qur protocols solve the mis-
use problem by only allowing a router to disconnect itself from its neighbors, yet guarantee
that all misbehaving routers will eventually be removed.

The outline of this chapter is as follows: To motivate our work, Section 3.2 presents
some denial of service examples for computer networks. Section 3.3 reviews related work on
securing routing protocols and routers. Section 3.4 describes our system model and failure
models for routers. Section 3.5 presents our overall approach for diagnosing routers and
the desirable properties of diagnosis protocols. Sections 3.6 and 3.7 detail our techniques
and protocols for misbehaving-router detection and present how automated response can
be carried out to logically remove those routers, thus restoring the operational status of
the networks. Section 3.8 concludes this chapter and discusses the limitations of our work

and future work.

3.2 Examples of Routing Infrastructure Failures

In this section, we describe three denial of service examples related to routers
and routing protocols. They are the 1980 ARPANET collapse, “black hole” routers, and
routers that misroute packets.

In the 1980 ARPANET collapse [58, 20], the source of the problem was mainly
due to a faulty router that generated a sequence of erroneous control packets. The se-

quence numbers of these control packets were of the form z < y < z such that = is more
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recent than y, y more recent than z, and z more recent than x. Having these control
packets exist simultaneously in a network causes an infinite cycle of control packet accep-
tance and retransmission. Because routing control packets received a higher priority than
the data packets, the routers in the ARPANET spent most of their time handling these
routing updates. Thus the network was unavailable for hours. Finn’s comments [20] on

the ARPANET incident are as follows:
“It is clear that many such update sequences can be found. This occurred
entirely by accident, from an unlikely set of circumstances. Network designers
did not consider it a serious possibility. However, a malicious router could easily

create this situation and halt the network. Such an attack would be extremely
damaging, difficult to prevent, and difficult to correct once it occurred.”

Routers exchange control packets to reflect changes, such as topology changes, in
a network. A black hole router (e.g., [20]) sends out routing updates claiming that it is
on zero-cost (or low-cost) paths' to all destinations and then proceeds to drop the packets
that it receives. In shortest-path based routing protocols, the most common kind of routing
protocols, routers choose the shortest path to forward a packet to its destination. As a
result, routers in the neighborhood of a black hole router will direct (some of) their network
traffic to the black hole. Figure 3.1 depicts a black hole router. The black hole problem has

occurred in operational networks (mostly accidentally) and can cause a widespread denial

destination Q

> () e
b o

trash bin @ misrouting
router

Figure 3.1: Black Hole Routers and Misrouting Routers.

of service.

1The cost of a path is equal to the sum of the costs of all its constituent links.
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Ideally, routers cooperate with each other to deliver the packets to their destina-
tions. However, if the routers make their routing decisions based on different views of the
state of the network, routing loops may be formed and the packets caught in them may
never reach their destinations. Temporary routing loops occur naturally, say when a link
goes down, and solutions have been proposed to deal with them (e.g., [16]). Permanent
routing loops or misrouting by a malicious router, depicted in Figure 3.1, are more serious
problems. In an IP (Internet Protocol) network, packets have a time-to-live (TTL) field,
which guarantees a packet will not stay in the network forever. Hence routing loops and
misrouting can cause packets to be dropped and can cause network congestion.

The first example belongs to a family of problems in which routers receive many
high priority control packets originating from a router and the routers spend a significant
portion of their time processing those packets. This type of problem can be detected and
excessive control packets can usually be dropped. For example, some routing protocols
(e.g., OSPF) impose a limit on the number of routing control packets originating from a
router that are accepted within a specified time interval. No solution has been published
to handle black hole routers (c.f., the second example) and misrouting routers (c.f., the
third example). We will model these two types of failures and present diagnosis protocols

to detect and to respond to them.

3.3 Related Work

Many existing routing protocols are not well protected. For example, sending
plain-text passwords in the clear is the only routing update authentication method currently
defined in RIP version 2 [39]. Perlman [50, 51] presents a scheme for public-key distribution
and for protecting link state updates by means of digital signatures. Finn [20] discusses
using public-key and secret-key routing update authentication in general and proposes a
secure routing protocol. Kumar and Crowcroft [34] propose a design to secure IDPR, an
inter-domain routing protocol. Murphy and Badger [47] propose a design to incorporate
public-key distribution and signing link state updates in OSPF. In Chapter 2, we presented
an efficient message authentication scheme for link state routing, also based on a detection-
response approach. Using strong authentication methods on routing information does not
solve all the problems. For example, if a router is faulty or compromised, it may send

out erroneous but authentic routing control packets. No prior work has been published
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on using a detection-based approach for protecting routing infrastructures from denial of

service attacks.

3.4 Our Model

A network is modeled by a directed graph G = (V| E). Vertices represent routers
and edges represent communication channels, which may be point-to-point links or net-
works attached to more than one routers. Note that we do not model hosts that are not
routers. If a source host cannot send a packet directly to the destination host, the source
will send the packet to a router. We call this router the source router. When a router re-
ceives a packet, it will send the packet directly to the destination host if it can; otherwise,
it will forward the packet to another router “closer” to the destination host. We call the
router that delivers the packet to the destination host the destination router. A packet
generated by a host is represented by a packet generated by the source router. That packet
is called a source packet with respect to the source router. Moreover, a packet destined
for a host is represented by a packet destined for the destination router. That packet is
called a destination packet with respect to the destination router. Packets processed by a
router that are neither source packets nor destination packets with respect to this router
are called transit packets with respect to this router.

We make the following network assumptions. Assumptions 1, 2, and 3 are used
to ensure that a router knows the expected behavior of other routers. Note that Assump-
tions 1 and 2 can be realized by using link-state routing?. We will justify Assumption 1 in

Section 3.8.

Assumption 1 (Complete Topology) Every router has the same map that shows how

routers are connected and the cost of communication between neighboring routers.

Assumption 2 (Shortest-path Routing) A router always chooses the shortest path to

route a packet to its destination.

Assumption 3 (Bidirectional Channels) Vi,j € V, (4,7) € E = (j,i) € E. In other

words, communication channels between neighboring routers are bidirectional.

2 As described in Section 2.2, in link-state routing, a router generates an update packet that contains its
own identity and the costs (e.g., link delay) to each of its neighboring routers. The update packet is then
distributed to all other routers by flooding. Each router collects the update packets from all other routers,
constructs the shortest path tree with itself as the root, and updates its own routing table.
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Traditionally, security research works on the worst-case assumption that an ad-
versary has unlimited power. Solutions developed under that assumption, if they exist at
all, may be impractical to use [41]. In reality, some failures may be less likely to occur than
the others. For example, many router failures are caused by accident. Another example
is that an attacker may be able to change the routing table of a router but not the router
software. Modifying the router software may require detailed knowledge about the routing
protocol and the router’s operating system, require access to the (possibly proprietary)
source code. and require a break-in to a router. In the rest of this section, we present
failure models for routers by characterizing the behavior of an adversary. Having those
failure models allows us to study the problems and develop solutions for them.

We define a network sink as a router that drops (some of) its transit packets.
A black hole is a network sink that also sends out routing advertisements claiming it can
reach certain destinations with costs lower than that it should advertise according to the
routing protocol specification. We define a misrouting router as a router that forwards
a transit packet to a router other than the one on the shortest path to the destination
router. A router that exhibits network sink or misrouting behavior is called a bad router;
otherwise, it is called a good router. Bad routers may be caused by software/hardware
faults, misconfiguration, or malicious attacks. We make the following assumption about

good routers.

Assumption 4 (Existence and Connectivity of Good Routers) There exists at

least one good router in the network and all good routers are connected via good routers.

We present two independent ways to classify bad routers with the property that
a stronger (or more restricted) class is a subset of a weaker (or more general) class. Thus
any solution for a weaker class is also applicable to a stronger class. As demonstrated in
Sections 3.6 and 3.7, a bad router from a weaker class may be harder to detect than one
from a stronger class. Our classifications are depicted in Figure 3.2. The first classification
addresses when bad routers misbehave, and the second classification addresses on what
packets bad routers misbehave.

In the first classification, the classes are permanent, almost permanent, probabilis-
tic and intermittent. A permanently bad router exhibits the anomalous behavior all the
time. An almost permanently bad router is like a permanently bad router, except when

it sees explicit control packets associated with a diagnosis procedure: To avoid revealing
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Figure 3.2: Classifications of Bad Routers.
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its misbehavior, it may behave like a good router when it is being diagnosed. After the
diagnosis is over, it may switch back to the bad-router mode. The almost permanent class
represents a way bad routers can “trick” diagnosing routers to cause false negatives. For ev-
ery transit packet, a probabilistic bad router exhibits the anomalous behavior with a certain
probability. An intermittently bad router may exhibit the anomalous behavior at arbitrary
times but misbehaves infinitely often. Unlike probabilistic bad routers, conducting statis-
tical tests may not reveal the misbehavior of an intermittently bad router. “Permanent”
is weaker than both “almost permanent” and “probabilistic”. “Almost permanent” and
“probabilistic” are in turn weaker than “intermittent”.

In the second classification, the classes, from the strongest to the weakest, use
the following criteria to drop or to misroute packets: all packets, the values of source or
destination attributes® that satisfy certain conditions, and the contents of entire packets,
which include the values of the source/destination attributes and the packet payload, that
satisfy certain conditions. Those classes are called indifferent, address-aware, and content-
aware respectively. In our definition, the “address-aware” class includes the “indifferent”
class; an indifferent bad router is a special case of address-aware bad routers in that it
does not use the address information. Similarly, an address-aware bad router is a special
case of content-aware bad routers. For example, an address-aware bad router may act on
packets sent by a certain organization and a content-aware bad router may act on packets

that contain certain keywords in their payload.

3.5 Our Approach

In our approach, routers diagnose each other to identify bad routers. Preparata,
Metze, and Chien (PMC) [52] proposed a framework for this kind of diagnosis. (Barborak,
et al.’s paper [3] surveys extensive work that [52] has initiated.) Preparata, et al. modeled
a system equipped with automatic fault diagnosis in which system components can test
each other to detect and to locate faulty components. After a component applies a test
to another component, the tester will know if the tested component is fault-free or faulty.
Permanent faults and perfect test coverage* are assumed. In the PMC model, a centralized

supervisor is used to collect and analyze all the test results and determine which compo-

3For IP networks, the attributes for a source or a destination are an IP address and a port number.
4A fault-free tester can always determine accurately the state of a tested component.
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nents are faulty. Note that the test results from a faulty component may be unreliable.
The PMC model is a starting point for our work, but we need a more realistic model in
the context of routing infrastructures.

There are two main issues in our approach. First, given a failure model, we need
to design tests that can reveal the anomalous behavior of bad routers. Second, we need to
determine how to carry out the diagnosis. In the PMC model, test assignments are designed
assuming that a component can test any other component. However, we need to consider
the topology of the underlying physical communication network in router diagnosis—how
routers can communicate/coordinate with or test each other without being affected by the
presence of bad routers. Sections 3.6 and 3.7 present two different techniques for detecting
network sinks and misrouting routers, namely distributed probing and flow analysis, and
discuss how to perform automated response to reconfigure the network so as to logically
remove the bad routers. Distributed probing assumes a more benign bad router model and
has a lower cost. Moreover, it works well even if multiple bad routers exist simultaneously.
Flow analysis works on a more malicious bad router model; however, it is more expensive
because it requires the routers to monitor every transit packet. Our diagnosis protocols are
distributed in nature and do not assume a centralized analyzer that gathers and analyses
the test results, which may become a single point of failure.

We use the following criteria—the first two concern detection and the third con-

cerns response—to evaluate our diagnosis protocols:

e Soundness: If a router is diagnosed as a bad router by good routers, the router is

a bad router.

e Completeness: If there are bad routers in the network that have misbehaved, our

diagnosis routine can locate at least one of them.

e Responsiveness: Eventually, all bad routers in the network will be identified and

logically removed, and the good routers will still be connected.

3.6 Distributed Probing

In distributed probing, a router diagnoses its neighboring routers by sending them
directly (i.e., without passing through intermediate routers) a test packet whose destination

router is the tester itself. A tester uses the fact whether it can get back the test packet
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within a certain time interval® as an indicator of the goodness of the tested router. Note
that this test is not useful for all neighboring router pairs. If the shortest path from the
tested router to the tester involves other intermediate routers, the fact that the test packet
cannot reach the tester does not necessarily mean the tested router is bad.

Distributed probing is applicable to detect network sinks and misrouting routers
that cause denial of service—that is, the misrouted packets cannot reach their destina-
tions. In this section, we will present two protocols that detect two different classes of bad
routers. The first protocol works for almost permanently, indifferently bad routers. The
second protocol works for almost permanently bad routers that are source-address-aware
and payload-aware. Before we present our protocols, we will define our notation and state
additional assumptions that are specific to distributed probing.

Recall that a network is modeled by a directed graph G = (V, E) where vertices
denote routers and edges denote communication channels. Let e = (4,5) € E be an edge
that goes from vertex i to vertex j. The cost® of e is denoted by cost(i, j) or cost(e). An
edge (i,7) € E is called testable if cost(j,4) is strictly less than the cost of any other path
from j to i in G, where the cost of a path is the sum of the costs of all edges on the path. We
use Assumption 1 to ensure that 7 and j see the same network state. The notion of testable
edges characterizes the edges useful to distributed probing. Consider a network, depicted

in Figure 3.3, that has three routers, namely a, b, and c. We denote cost(b, c), cost(b,a),

Figure 3.3: Testable Edges.

®The time interval is set as an upper bound of the round-trip time between the testing router and the
tested neighbor.

5The cost (or distance) metric depends on the routing protocol used. For example, every link has the
same cost in some routing protocols. On the other hand, the cost of a link depends on the link capacity in
others. Our work is applicable to any cost metric.
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and cost(a, c) by ¢y, c2, and c3 respectively. The edge (c, b) is testable if ¢; < (co+c¢3). Let
p be a packet whose destination is ¢. If (c,b) is testable and router ¢ sends p to b, then p
will return to c if and only if b does not misbehave on p. Fori € V, N(i) = {j | (1,5) € E}
denotes the set of neighbors of vertex i. For SCV, N(S)={j ¢S | (i,j) € E N i€ S}
denotes the set of neighbors of S, a set of vertices. If the context is clear, we sometimes

use %, ¢ € V, to refer to the router represented by vertex .
Assumption 5 (Positive-Cost Edges) Ve € E, cost(e) > 0.

Assumption 6 (Pairwise Private Addresses) For alli € V and j € N(i), i has an
address that i can, but j cannot, reach without using any intermediate routers’. We call
this address the pairwise private address of vertex © with respect to vertexr j and denote it
by paddr;(i). This requirement ensures that a testing router can generate a packet whose

destination is the testing router itself and the packet is a transit packet for the tested router.

Protocol 1 (Autonomous Distributed Probing)
Vi € V, vertez i executes the following at random times®:
For each j € N(i) such that (i,j) is testable

Send a packet p whose destination is paddr;(i) to j via (i,7);

If p does not return to 1

Then i ceases its neighbor relationship with §° (i.e., i believes j is bad)

Else i does nothing (i.e., i believes j is good)

Lemma 1 Given that bad routers are almost permanent and indifferent, Protocol 1 is

sound.

Proof: Because Protocol 1 does not use any control packets, it is applicable to diagnosing
almost permanently bad routers. The soundness of the protocol follows from the definition

of testable edges. O

Lemma 2 Given that bad routers are almost permanent and indifferent, Protocol 1 is

complete.

"If necessary, we may assign an unused address to a router interface to realize this requirement.

81f we execute the diagnosis protocol at deterministic times, a bad router can avoid revealing its misbe-
havior by behaving like a good router during these diagnosis time periods.

9Broadcasting neighbor relationship changes can be done by flooding, the procedure used by link state
protocols to distribute routing updates.
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Proof: Consider a maximal connected component of bad routers in G. We denote
the set of those bad routers by B. If N(B) is empty, then by Assumptions 3 and 4
the bad routers are disconnected from the network. Otherwise, we claim that at least
one vertex in N(B), the set of good neighbors of B, has a testable edge to a vertex in
B. On the contrary, we assume that none of the vertices in N(B) has a testable edge
to a vertex in B. Let BN = {(z,y) | * € B Ay € N(B)}, the set of edges incident
to a vertex in B and a vertex in N(B). Moreover, let (b,n) € BN be an edge such
that Ve € BN, cost(b,n) < cost(e). Because we assume (n,b) is not testable, there exists a
multi-edge path P = (b — ... = n) such that cost(P) < cost(b,n). Thus, by Assumption 5,
Jde € BN such that cost(b,n) > cost(e), which contradicts the choice of (b,n). O

Lemma 3 Given that bad routers are almost permanent and indifferent, Protocol 1 is

TESPONSIVE.

Proof: Lemma 2 proves that at least one of the bad routers, say b, will be located
by a good router, say g. Then, by Protocol 1, g will cease its neighborhood relationship
with b. Recall our assumption that the good routers are connected in G. The new graph
G' = (V,E') where E' = E—{(b,g),(g,b)} has all the good routers remain connected. Note
that bad routers’ disconnecting themselves from their neighbors, no matter good or bad,
does not affect the result. Thus running Protocol 1 continuously will eventually remove all
the edges between a good router and a bad router, yet maintaining good routers connected.

a

Theorem 2 Given that bad routers are almost permanent and indifferent, Protocol 1 is

sound, complete, and responsive.

Proof: The proof follows from Lemma 1, Lemma 2, and Lemma 3. O

Protocol 1 can be modified to cope with permanently bad routers that are source-
address-aware and payload-aware. A fresh and authenticated diagnosis request that con-
tains the values of source attributes and payload can be distributed to all routers by
flooding. Then the routers will use those values to construct their test packets. However,
the request may alert the bad routers about the upcoming diagnosis. Thus the flood-
ing of that diagnosis request disqualifies the protocol for detecting almost permanently

bad routers. In the following, we present another modification to Protocol 1, which we
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call source-initiated distributed probing, that almost avoids the problem of alerting bad
routers about the diagnosis, unless the router used to initiate the diagnosis protocol is bad.

In source-initiated distributed probing (Protocol 2), a fresh and authenticated
start diagnosis request that contains an identifier, 2d, and the values of source attributes
and payload is sent to a router, say r. For example, we can choose the source router with
respect to the values of source attributes as . If a host discovers its packets cannot reach
their destinations, it can send a request that contains the information about those packets,
which can be used to construct a diagnosis packet, to the source router r. Protocol 2
assumes that r is a good router; otherwise, the protocol may fail. Note that in Protocol 2, a
router forwards a start diagnosis request to a neighbor only after that neighbor is diagnosed
to be a good router. Thus routers will not be alerted about the diagnosis before they are
judged to be good routers. To stop the diagnosis, an authenticated quit diagnosis request

that contains 7d will be sent to all routers.

Protocol 2 (Source-initiated Distributed Probing)
Vi € V, if i receives a fresh and authenticated start request, sr, that contains the values for
source attributes, s, and the payload, 1, then i executes the following at random times:
If ¢ receives the authenticated quit request, qr
Then i forwards qr to all neighbors that © has sent the corresponding sr;
1 quits the diagnosis;
For each j € N (i) such that (i,7) is testable
Send a packet p whose source is s, destination is paddr;(i), and payload is I,
to j via (3,7);
If p does not return to 4
Then i ceases its neighbor relationship with j (i.e., i believes j is bad)

Elself i has not forwarded sr to j, do so (i.e., i believes j is good)

Lemma 4 Given that bad routers are almost permanent, source-address-aware, and pay-
load-aware, and the first router chosen to initiate the diagnosis is good, Protocol 2 is com-

plete.

Proof: Let r be the router chosen to initiate the diagnosis and KG be the set of known
“good” routers. KG is initialized to {r}. We will prove the completeness of Protocol 2 by
induction on the cardinality of KG.
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Base case (i.e., KG = {r}): Let MIN = {i € N(r) | Vj € N(r),cost(j,r) >
cost(i,7)}. We claim that r has a testable edge to every vertex in MIN; otherwise, by
Assumption 5, it violates the definition of MIN. If all vertices in MIN are good, then
the new K G equals the old KGUMIN (i.e., the cardinality of KG is increased by at least
one). Otherwise, a bad router is located.

Induction step: Consider an arbitrary vertex g1 € KG. Let 1 € N(g1) — KG. If
(g1, 1) is testable, then either the new KG equals the old KG U {z1} or z; is diagnosed
as a bad router. If (g1,z1) is not testable, then 3go € KG A o € N(g2) — KG such
that cost(z1 — ...x2 = g2... = g1) < cost(x1,g1). In other words, we have cost(zz,g2) <
cost(zr1,91). Again, if (g9, z2) is not testable, then we can apply the same argument and
eventually we can find a testable link originating from a vertex in KG. As a result, either

the cardinality of K G can be increased by at least one, or a bad router can be located. O

Theorem 3 Given that bad routers are almost permanent, source-address-aware, and pay-
load-aware, and the first router chosen to initiate the diagnosis is good, Protocol 2 is sound,

complete, and responsive.

Proof: The proof follows from Lemma 4 and the fact that the proofs of the soundness

and the responsiveness properties are the same as those of Protocol 1. O

3.7 Flow Analysis

Flow analysis monitors the transit packets flowing in and out of a router to detect
abnormal behavior. For each router, the neighbors collaborate to diagnose the router. To
enable robust communication among routers, we use flooding to exchange control messages
in our protocol. The flooding technique was also used in Perlman’s secure routing work [50,
51]. To detect network sinks, the neighbors verify “conservation of transit traffic”, depicted
in Figure 3.4, by comparing the amount of transit traffic with respect to the tested router
going in and that going out of the router. To detect misrouting routers, they verify that
the transit packets coming out of the tested router are correctly forwarded. Flow analysis
is applicable to bad routers that are intermittent and content-aware. (That is, all failure
models discussed in Section 3.4.) In this section, we will first define our notation, and then
state additional assumptions that are specific to flow analysis. Finally, we will present our

diagnosis protocol and prove its properties.
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Figure 3.4: Conservation of Transit Traffic: > 1 | z; = D1, ¥i-

For all (i,j) € E and k € {i,j}, let ¢(; j)(k) be the accumulated number of bytes
of the packet payload'® for the transit packets with respect to both i and j sent from i
to j from k’s point of view!!, n(; ;) (k) be the accumulated number of bytes of the packet
payload for the packets that are transit to ¢ but non-transit to j sent from ¢ to j from £’s
point of view, g(; j)(k) be the accumulated number of bytes of the packet payload for the
packets that are source packets of 7 and transit to j sent from ¢ to j from k’s point of view,
and my; j)(j) be the accumulated number of bytes of the packet payload for the misrouted
transit packets with respect to 7 sent from ¢ to j from j’s point of view. Figure 3.5 depicts
t(ig)(k), ngj)(k), and g(; jy(k), which concern packets sent from router i to router j. A
router can compute the above counters because of the assumption that routers know the

topology of the network and the costs of the edges (i.e., Assumption 1).

Assumption 7 (No Adjacent Bad Routers) V(i,j) € E, i is a good router or j is a

good router.

Assumption 8 (Good Routers Are In The Majority) The number of good routers
> |V]/2.

0Because of possible packet fragmentation, we use packet payload sizes instead of packet counts. Packet
fragmentation occurs because networks have different maximum packet sizes, also known as maximum
transfer units (MTU).

'We introduce k here to detect disagreements between ¢ and j.
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Figure 3.5: t(z’])(k), ‘I’L(ZJ)(]{I), and g(z’]) (I{I), k S {Z,j}

Assumption 9 (Negligible Per-hop Packet Delay) The propagation delay, the pro-

cessing delay, and the queueing delay for sending a control packet over a link are negligible.

The execution of Protocol 3 is divided into phases. Every phase has two steps:
counter value exchange and distributed diagnosis. In counter value exchange, routers record
the values of their counters and broadcast their counter values via flooding to other routers.
Protocol 3 would be simpler if we assume the clocks of the routers are synchronized. We
do not make that assumption. In Protocol 3, routers synchronize their checkpointing
events by exchanging a special message, called the next phase ready message. A router
broadcasts a next phase ready message when the time elapsed since the last phase change
reaches 7, the pre-defined time interval between consecutive phases. When a router receives
the next phase ready messages from a majority of routers (i.e., [(|V]+ 1)/2] routers), it
constructs a checkpoint message, which contains the current phase number and its own
counter values, and floods the checkpoint message to other routers. Because we assume
the majority of the routers are good (Assumption 8), at least one good router is involved in
each phase change. Bad routers cannot significantly increase or decrease the time interval
between any two consecutive phases. In the protocol, we only require a router and its
neighbors to checkpoint at approximately the same time. Because communication channels
are bidirectional (Assumption 3), per-hop packet delay is negligible!? (Assumption 9),

and flooding is used, neighboring routers see other routers’ next phase ready messages at

2We can realize negligible per-hop packet delay by choosing an appropriate 7, the pre-defined time
interval between consecutive phases.
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roughly the same time!'3.

Based on the checkpoint messages received, routers perform distributed diagnosis
to decide if a neighboring router is bad—mnot sending out checkpoint messages, sending

4 removing transit packets'®, or misrouting packets.

out erroneous checkpoint messages'
If a router diagnoses a neighboring router as bad, it ceases the neighbor relationship by
flooding a link state update that indicates the link between these two routers is down. As
a result, routers recompute their routing tables to avoid using that link. To protect the
authenticity of the control messages (i.e., next phase ready messages, checkpoint messages,
and link state updates), we attach digital signatures to them in Protocol 3 so that the

receivers can authenticate the origin and the integrity of these messages.

Protocol 3 (Flow Analysis)
Vi € V, i initializes the current phase variable, phase;, to zero. A message is called current
if its phase number equals phase;. Let m be the pre-defined time interval between consecutive
phases and At; be the local time elapsed since the last phase started. If i has just started,
“last phase started” denotes the time i started running the protocol. Then i executes the
following:

Wait until (1) At; =m or (2) [(|[V|+1)/2] authenticated current next phase ready

messages have been received;

Broadcast an authenticated next phase ready message that contains phase;;

Wait until [(|V|+ 1)/2] authenticated current next phase ready messages have

been received;

Store and then reset local counters (i.e., t(; ;(3), () (), 1 3y (9), 1.0y (4), G ) (4),

90 (2), and m; ;) (3));

Set At; = 0;

Broadcast an authenticated checkpoint message that contains (1) phase;,

(2) Vj € N (i), t5)(9), niy (@), and g 4)(i), and (3) Yk € V such that i € N(k),

tik,i) (1), ki) (8), and g4y (3);

For each j € N (1)

13A bad router could delay forwarding packets to its neighbors; however, it can only harm itself (i.e.,
exposing its misbehavior) for not having a consistent view with its neighbors.

"“For each neighbor, a router compares its own counter values with the corresponding counter values
reported by that neighbor to detect discrepancies.

51f a router drops transit packets without sending out erroneous checkpoint messages, the misbehavior
will be revealed by the conservation of transit traffic test.
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If j’s authenticated current checkpoint message has been received
and t(; ;) (1) = 5 (7) A ngg)(E) = ne,5) () A 9a.5) 0 = 96,5 ()
Then
If Vk € V' such that k € N(j) or j € N(k),
k’s authenticated current checkpoint message has been received and
(k€ N(J) = (tgr(d) = thr (k) Angr () = ngr ()A
96k (3) = 9(ik) (K))) and
VAS N(k) (t k,])( ) = tw,5) (k) Anggy(7) = e, (R)A
9051 (3) = 900 ()
Then
If > ictn | jenm)Cag () + 90,5 (5) # Zieni)Egn () +nen (7))
(i.e., conservation of transit traffic violated)
Then i ceases its neighbor relationship with j;
Else do nothing (because other routers will respond to the problem);
Else i ceases its neighbor relationship with j;
For each j € {n | i€ N(n)}
If j ’s authenticated current checkpoint message has not been received or
) (0) 7 0 () Vi) () 7 nGiay () V i) 0) # 96 () V i (6) # 0
Then 1 ceases its neighbor relationship with j;

Set phase; = phase; + 1

Lemma 5 Given that bad routers are intermittent and content-aware, Protocol 3 is sound.

Proof: We prove the lemma by case analysis. First, there are three cases a router, say b,

can be diagnosed as a network sink by good routers:

e Ji € V, a good router, such that s € N(b) or b € N (i) and 7 does not receive authen-
ticated current checkpoint messages from b. Because we assume all good routers are
connected, and flooding, which takes negligible time, is used to broadcast checkpoint

data, i’s not receiving b’s checkpoint data implies that b has not sent any.

e Ji € V, a good router, such that (i € N(b) A (£(5,4)(4) 7 5 (b) V 15 (1) # 15,3y (0) V

9(b,) (1) # 9,5 (D)) or (b € N (i) A (tip) (1) # t(ap) (B) V iy (1) # 1y (b) V g(ip) (2) #
9(i,p) (b)) implies either b or 7 has lied. Thus b must be a bad router.
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® Dkcin | benN(n)} Ekp) (0) + 9@kp)(B) # Xken) (Eo,k) (b) + 1 k) (b)) implies b is a net-
work sink because the amount of transit traffic flowing in b is not equal to that flowing

out of b.

Note that b is diagnosed by i € N (b) as a misrouting router only when m, ;) (i) # 0. Hence

Protocol 3 is sound. O

Lemma 6 Given that bad routers are intermittent and content-aware, Protocol 8 is com-

plete.

Proof: By performing a case analysis similar to that of Lemma 5 together with Assump-
tion 7, one can show that bad routers which have misbehaved and are connected to the

network will be located by at least one of their good neighbors in the next phase. O

Lemma 7 Given that bad routers are intermittent and content-aware, Protocol 8 is re-

sponsive.

Proof: By Assumption 7 and Lemma 5, we know that only edges incident on a good
router and a bad router are removed from E. Thus good routers will remain connected.
By Lemma 6, when a bad router that is connected to the network misbehaves, it will be
located by a good router in the next phase. Together with the fact that an intermittently
bad router misbehaves infinitely often, eventually all bad routers will be logically removed

from the network. O

Theorem 4 Given that bad routers are intermittent and content-aware, Protocol 3 is

sound, complete, and responsive.

Proof: The proof follows from Lemma 5, Lemma 6, and Lemma 7. O

3.8 Discussion

This chapter addresses denial of service on routers and routing protocols. We
present failure models for routers that characterize the behavior of failed routers, which
may be caused by natural faults or malicious attacks. Based on the failure models, we
develop techniques and protocols to detect and to respond to misbehaving routers, and

prove properties of the protocols, namely soundness, completeness, and responsiveness.
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To avoid introducing additional vulnerabilities to the routing infrastructures, we designed
our protocols in such a way that a bad router cannot disconnect a good router from the
rest of the network and a bad router cannot initiate the diagnosis so often to make all
routers spend most of their time executing the protocol (c.f. the flow analysis protocol in
Section 3.7). In conclusion, if there is a path between the source and the destination on
which all routers are good, our protocols guarantee that the network will eventually be
able to deliver packets from the source to the destination.

Our work does not solve the entire denial of service problem of routing infrastruc-
tures. This chapter represents a first step to protect routing infrastructures from denial of

service using an intrusion detection approach. Issues not addressed include the following:

o There are router failures not covered by our failure models: For example, a compro-
mised router may modify the content of a transit packet. Distributed probing can
be adapted to handle this problem—a router can check the integrity of test packets
after they are sent back by tested routers. Digital signatures may be used to detect
packet payload modification; however, generating and verifying digital signatures are
too computationally expensive to be applicable. Adapting flow analysis to efficiently

diagnose this kind of failure appears to be non-trivial and is a future work item.

o Link failures are not modeled: Note that in our protocols, a link failure that results
in packet loss may be viewed as a node failure. The routers incident to the link will
detect the failure and cease the neighbor relationship. Consequently, the failed link

will not be used.

e Qur models do not handle packet loss by good routers: Good routers may be forced
to drop packets because of, for example, network congestion and buffer overflow. A
general technique to cope with this problem is to set a threshold on how many packets
a good router can drop. To illustrate, we may incorporate the “k-out-of-n” method
in our distributed probing protocols: A router is considered good if it can pass k out
of n tests. For the flow analysis protocol, we may relax the conservation of transit
traffic test by checking whether the difference between the amount of incoming transit
traffic and that of the outgoing transit traffic is less than a threshold. A threshold
may be learned empirically by identifying a recurring pattern of network traffic. We

note that there may be a tradeoff between the detection rate and the false positive
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rate: If the threshold is low, there may be many false positives. If the threshold is
high, some misbehaving routers (e.g., routers that look for very specific packets to

drop) may not be detected. This issue needs further research.

Nature of our assumptions: Our assumptions fall into three categories: network
configurations (e.g., network connectivity and routing protocols used), the number
and the distribution of bad routers (e.g., good routers are in the majority), and
packet propagation (e.g., routers see the same network state). One could extend
our results by relaxing the assumptions in the first two categories. For example,
Bradley, et al. [6, 7] extended the flow analysis protocol to handle networks that
have neighboring bad routers (see below). For the packet propagation category, we
made Assumptions 1 and 9 to ensure neighboring routers have the same view. These
assumptions enable routers to determine testable edges in the distributed probing
protocols, to determine whether a packet is misrouted, and to perform consistent
checkpointing in the flow analysis protocol. We argue that Assumption 1 is a reason-
able assumption. First, by using flooding to disseminate routing updates (as is done
in link-state routing protocols) and checkpoint packets, and requiring communication
channels to be bidirectional, neighboring (good) routers see the control packets at
almost the same time. Second, as noted in [66], link costs are static, independent of
link load, in modern link-state routing protocols. Thus normally link states do not
change often. To satisfy Assumption 9, we can use a longer time interval between
consecutive phases to reduce the impact of packet propagation delay, which causes
slightly different checkpoint times among neighboring routers. To cope with the cases
in which Assumptions 1 and 9 do not hold, we can incorporate a threshold on the
differences between the counter values of neighboring routers in the flow analysis

protocol. Future work is needed to validate the practicality of these assumptions.

Our models only consider transit traffic: In other words, packets sent by source
hosts to source routers and those sent by destination routers to destination hosts are
not addressed. Our work is useful in containing the damage that can be caused by a
router to its source and destination packets. A related issue is that a router may claim
that it is directly connected to a local network, thus becoming a source/destination
router for that local network. To address this problem, routers can be given a list of

potential neighbors and use it to identify those false advertisements.
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o We have not examined the overhead on routers that perform diagnosis: For dis-
tributed probing, a router needs to determine the testable links from itself to its
neighboring routers, based on the link state updates received, and then sends (and
receives) a test packet to (and from), in the worst case, each of its neighbors. The
overhead depends on how often the diagnosis is performed. For flow analysis, there
are two main sources of overhead: First, for each transit packet, the router needs
to look up a table, which may need to be updated when there is a topology change,
and then increments the appropriate counter. Second, at the end of each phase, a
router broadcasts an authenticated message to signal that it is ready to advance to
the next phase (i.e., next phase ready message), and broadcasts an authenticated
message containing the values of its local counters (i.e., checkpoint message). Then
routers will verify the goodness of their neighboring routers by computing the amount
of transit traffic flowing in and out of those neighbors. We note that message au-
thentication in the flow analysis protocol has the characteristic that a router needs
to verify the authenticity of control messages sent by many routers. Thus the OLSV
protocol discussed in Chapter 2 may be helpful to reduce the message authentication

overhead for flow analysis.

Together with Bradley, et al. [6, 7], we improved the results presented in Sec-
tion 3.7 and performed a more detailed analysis on the overhead for flow analysis. Specif-
ically, the flow analysis protocol presented in Section 3.7 has a limitation that it cannot
cope with adjacent misbehaving routers. Bradley, et al.’s paper solves this problem by in-
troducing destination-specific counters to monitor the traffic flows entering and departing
a router. The idea is to perform conservation of flow checks on a per destination router
basis. In other words, we check to determine if the amounts of transit traffic for a particular
destination going in and going out of a tested router are the same. Consider the following
scenario. Suppose router A sends a packet to router D along the A -+ B — C — D path.
Let B and C' be misbehaving routers and they collaborate with each other to drop the
packet. B can evade detection by the flow analysis protocol presented in Section 3.7 by
claiming that C is the destination of the packet (i.e., routers B and C can increase the
counters n(pg ¢)(B) and n(p c)(C) by the size of the packet). If destination-specific coun-
ters are used, router B cannot claim that the packet is for router C' anymore. Otherwise,

router B cannot pass the conservation flow test for the traffic destined for router D.
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Chapter 4

Protecting Domain Name Systems

4.1 Introduction

In this chapter, we present a detection-response approach for protecting domain
name systems (DNS). DNS manages a distributed database to support a wide variety of
Internet applications such as electronic mail, WWW, and remote login. For example,
network applications rely on DNS to translate between host names and IP addresses. A
compromise to DNS may cause denial of service (when a client cannot locate the network
address of a server) and entity authentication to fail (when host names are used to specify
trust relationships among hosts).

In our approach, we define our security goal for DNS—A name server should only
use DNS data that are consistent with those disseminated by the name servers that manage
the relevant part of the DNS name space. Our approach employs formal specifications to
provide assurance for our solution. Formal methods have not been used in connection with
an intrusion detection approach. We characterize DNS clients and DNS servers using formal
specifications. These specifications reflect the minimal functionalities (or “the greatest
lower bound”) of these DNS components among existing DNS implementations. Thus if
our scheme is strong enough to protect DNS components described by those specifications,
it is also strong enough to protect all those DNS implementations.

We characterized a DNS wrapper, which enforces our security goal for DNS, using
a formal specification. Our DNS wrapper examines DNS messages entering and departing
a protected name server to detect those messages that could lead to violations of our

security goal. If the wrapper does not have enough information to determine whether
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a DNS message represents an attack, it collaborates with the name servers that manage
the relevant part of the DNS name space. If the DNS wrapper cannot verify the data of
the DNS message to be trustworthy, the wrapper logs the message and prevents it from
reaching the protected name server.

In Section 4.2, we present an example to illustrate how DNS vulnerabilities can
affect network security. In Section 4.3, we briefly review the basics of domain name sys-
tems. (Readers are referred to [1, 43, 44] for more details about DNS.) In Section 4.4, we
describe some known DNS vulnerabilities. In Section 4.5, we survey and evaluate existing
approaches for securing DNS, including security enhancements implemented in BIND (in
particular BIND release 4.9.5) [71], Cheswick’s and Bellovin’s dnsprozy [13], and DNS secu-
rity extensions (DNSSEC) [19]. In Section 4.6, we present our detection-diagnosis-response
approach for protecting DNS. In Section 4.7, we present our system model. In Section 4.8,
we formally specify a DNS wrapper that enforces our security goal for DNS. Based on the
DNS wrapper specification, we implemented a DNS wrapper prototype. In Section 4.9,
we describe our experiments for evaluating the performance of our implementation, and
present our experimental results. Our results show that our DNS wrapper incurs reasonable

overheads and is effective against some known DNS attacks.

4.2 A Motivating Example

Human beings use mnemonic names such as cs.ucdavis.edu; however, machines
work with numbers such as IP addresses. DNS is used to translate host names to IP
addresses. Compromising DNS can change this mapping, and affects applications that use
name-based authentication. We use remote login (rlogin) as an example to show how DNS
vulnerabilities can affect security.

Suppose a user on host A logs into a remote host B. In the first scenario, host A
uses DNS to find out the IP address of B. Assume the DNS is compromised and the IP
address of another host, say C, is returned. Host C can masquerade as B and collect secret
information such as the user’s password. In the second scenario, when host B receives a
remote login request, it uses DNS to find out the name of the requesting host. An attacker
may compromise DNS and have it return the host name of one of the machines trusted by
B. In rlogin, a user can specify a list of trusted hosts and remote logins from these hosts

are automatically granted without checking passwords. In other words, the attacker could
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successfully log into host B without knowing the password.

4.3 Overview of DNS

4.3.1 What is DNS?

DNS is a distributed database indexed by names. A name is a sequence of char-
acters (e.g., host names or IP addresses). One of the main functions of DNS is to map host
names (e.g., cs.ucdavis.edu.) to IP addresses (e.g., 128.120.56.188) and vice versa. The

database has a hierarchical structure. Figure 4.1 depicts this tree-structured name space.
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Figure 4.1: Hierarchical Structure of DNS Name Space

A zone is a contiguous part of the domain name space that is managed together
by a set of machines, called name servers. The name of a zone is the concatenation of the
node labels on the path from the topmost node of the zone to the root of the domain name
space. The set of name servers that manage a zone are said to be authoritative for this
zone. Every subtree of the domain name space is called a domain. The name of a domain
is the same as the zone name of the topmost node of the corresponding subtree.

One of the main goals of the design of DNS is to have distributed administration.
The distribution is achieved by delegation. For instance, instead of storing all the informa-
tion about the entire edu domain, which is a very large domain, in a single name server, the
responsibility of managing the ucdavis.edu domain is delegated to the authoritative name
servers of UC Davis. The authoritative name servers of the edu zone are equipped with the

names of the authoritative name servers of the ucdavis.edu zone. Thus if the edu servers
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need information about the ucdavis.edu domain, they know which servers to contact.
Clients of DNS are called resolvers, which are usually implemented as a set of
library routines. Whenever an application on a machine needs to use the name service, it
invokes the resolver on its local machine, and the resolver interacts with the name servers
to obtain the information needed. The most common implementations of resolvers are
called stub resolvers (e.g., BIND! resolvers are stub resolvers). Stub resolvers only do the
minimal job of assembling queries, sending them to servers, and re-sending them if the

queries are not answered. Most of the work is carried out by name servers.

4.3.2 How does DNS Work?

The process of retrieving data from DNS is called name resolution or simply
resolution. Suppose the host hl.cs.ucdavis.edu requests the IP address of h2.cs.purdue.edu.
The resolver will query a local name server in the cs.ucdavis.edu domain. There are two
modes of resolution in DNS: iterative and recursive. In the iterative mode, when a name
server receives a query for which it does not know the answer, the server will refer the
querier to other servers that are more likely to know the answer. Each server is initialized
with the addresses of some authoritative servers of the root zone. Moreover, the root servers
know the authoritative servers of the second-level domains (e.g., edu domain). Second-level
servers know the authoritative servers of third-level domains, and so on. Thus by following
the tree structure, the querier can get “closer” to the answer after each referral. Figure 4.2
shows the iterative resolution scenario. For example, when a root server receives an iterative
query for the domain name h2.cs.purdue.edu, it refers the querier to the edu servers. In the
recursive mode, a server either answers the query or finds out the answer by contacting
other servers itself and then returns the answer to the querier.

The above resolution process may be quite expensive in terms of resolution time
and the number of messages sent. To speed up the process, servers store the results of
the previous queries in their caches. Consider the above example. If hl.cs.ucdavis.edu asks
its local server to resolve the same name twice, the server can reply immediately based
on the information stored in its cache the second time. Also, if in a subsequent query
hl.cs.ucdavis.edu asks its local server to find out the IP address of h3.cs.purdue.edu, the

local server can skip a few steps and contact a cs.purdue.edu server directly. If the querier

IBIND stands for Berkeley Internet Name Domain, which is the most common implementation of DNS.
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Figure 4.2: Iterative Name Resolution

gets an answer from an authoritative server, the answer is called an authoritative answer.
Otherwise, it is called a non-authoritative answer. Because there may be changes to the
mapping, servers do not cache data forever. Authoritative servers attach time-to-live?
(TTL) tags to data. Upon expiration, a name server should remove the data from its

cache.

4.3.3 DNS Message Format

A DNS message consists of a header and four sections: question, answer, authority,
and additional. A resource record (RR) is a unit of information in the last three sections.

Here is a list of common resource records [43]:
e An A record contains a 32-bit IP address for the specified domain name.

o A CNAME record lists the canonical name of the specified domain name. In other
words, a CNAME resource record maps an alias to the canonical/original domain

name.

e An HINFO record identifies the CPU and OS used by a host.

*There is no single “best” TTL value for all resource records. The TTL value of a resource record is
based on a tradeoff between consistency and performance. A small TTL will increase the average name
resolution time because remote name servers will remove the resource record earlier and need to query the
corresponding name servers more often. If a resource record is changed, a small TTL enables other name
servers to purge the stale data and to use the new data earlier. One should reduce the TTL before the
resource record is changed. A common TTL value is one day (e.g., the cs.ucdavis.edu zone), although some
high-level zones (e.g., the root zone) use a multi-day TTL.
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e An MX record contains a host name acting as a mail exchange for the specified

domain.

An NS record contains a host name that is an authoritative name server for the

specified domain.

e A PTR record contains a domain name corresponding to the specified IP address.

An SOA record indicates the authority for the specified domain name.

The header section includes a query ID3, an opcode*, an authoritative answer (AA)
flag®, and a recursion available (RA) flagé. The question section carries a target domain
name (QNAME), a query type (QTYPE), and a query class (QCLASS). For example, a
query to find the TP address of the host h2.cs.purdue.edu has QNAME=h2.cs.purdue.edu,
QTYPE=A, and QCLASS=IN (which stands for the Internet). The answer section carries
RRs that directly answer the query. The authority section carries RRs that describe other
authoritative servers. For instance, the authority section may contain NS RRs to refer the
querier to other name servers during iterative resolution. The additional section carries
RRs that may be helpful in using the RRs in the other sections. For instance, the addi-
tional section of a response may contain A RRs to provide the IP addresses for the NS RRs

listed in the authority section.

4.4 DNS Vulnerabilities

Bellovin [4, 5], Gavron [25], Cheswick and Bellovin [12], Schuba and Spafford
[60], Vixie [71], and CERT advisory 98:05 [10] have discussed several security problems
with DNS. In the following, we summarize their findings: in particular, cache poisoning,
failure to authenticate DNS responses, information leakage, masquerading as other name

servers, and denial of service.

3Query id’s are used in both queries and responses to facilitate requesters’ matching up responses to
outstanding queries.

“The opcode field of a DNS message distinguishes between different types of queries—standard queries
(SQUERY) and inverse queries (IQUERY). A standard query looks for the resource data given a domain
name. An inverse query looks for the domain name given resource data.

5The AA flag indicates whether the responding name server is authoritative for the domain name in the
question section.

5The RA flag indicates whether the responding name server provides recursive resolution services.
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In Section 4.2, we described how an old version of rlogin could be tricked to believe
that the requesting host is a trusted host. Newer versions of rlogin are smarter and can
cope with this attack. Suppose a host B receives a login request from a machine with IP
address IP,. After B queries DNS to find out the host name corresponding to IP,, say D,
it will perform another DNS lookup to find the IP addresses of D. Then B compares this
result with IP,. This event is logged if IP, does not match any of these IP addresses of D.
This “reverse name lookup” is also known as the Berkeley software patch. To circumvent
this cross-checking, an attacker may compromise the name server of the zone in which D is
located; however, this may be difficult. In a more sophisticated version of this attack, an
attacker poisons the cache of a name server. Recall that a name server caches the results of
previous interactions with other servers to improve performance. The attacker can poison
the cache of the victim machine by sending DNS packets that contain faked RRs to the
victim. By contaminating the cache of B’s local server with a mapping entry “D — IP,”,
the attacker can defeat the cross-checking. Schuba’s and Spafford’s paper [60] described
several ways to carry out cache poisoning in great details.

The message authentication mechanism used by most implementations of DNS is
weak. Specifically, a querier attaches an id to a query, and uses it to match with the id of
the corresponding response. Suppose a server S sends a query to another server Sy. If an
attacker can predict the query id used by S, a forged response that has a matching query
id can be constructed. When S; receives the response that claims to be from Sy, S has
no way to verify that the response actually comes from Ss. If Sy is unavailable (e.g., So is
under a denial of service attack) when the query is sent, the attacker can just masquerade
as So and send the forged response to S;. Even if S, is operational, the attacker may
overload Ss by sending it a lot of queries to cause Se to drop Si’s query. Also, if a name
server receives multiple responses for its query, it uses the first response. Thus even if Sy
can reply to Sp, the attacker can still succeed if the forged response reaches S; before So’s
response does.

Attackers may use DNS to obtain a lot of information about the machines of
a domain—for example, host names, machine types, and operating systems used. This
information is useful for attackers to choose which machines to attack and which attack
methods to use. In BIND release 4.9.3 [70], an access control mechanism is available to

restrict which machines can obtain information from a name server.
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Gavron [25] described an insecure feature” in DNS resolvers regarding their default
search heuristic®. When an “incomplete” domain name is given to a resolver, it tries to
expand it to a “fully qualified domain name”. For example, consider a telnet attempt from
a.b.c.d. to e.f.g.h, which is not a fully qualified domain name because it does not end with
a dot. A resolver with this insecure feature will attempt to resolve the domain name of
the destination host in the following order: e.f.g.h.b.c.d., ef.g.h.c.d., e.f.g.h.d., and e.f.g.h..
Thus, if an attacker creates a domain h.d, the traffic would be redirected to an unintended
server. In the newer implementations, only the first and the last alternatives—one that
falls into the user’s domain or one specified by the user—will be tried by a resolver.

CERT [10] published an advisory on several vulnerabilities in BIND that could
lead to unauthorized transfers of root privileges and name server crashes. The first vulner-
ability concerned inadequate checks on the size of inverse queries. (An inverse query looks
for a domain name given a certain resource/attribute value.) Exploiting this vulnerability
could cause malicious data to be written into improper memory locations because of buffer
overflow, thus crashing name servers or forcing unauthorized transfers of root privileges.
The second vulnerability concerned about inadequate bound checks for processing DNS
messages. A malformed DNS message could cause a name server to read from invalid
memory locations, which could lead to a system crash. The third vulnerability concerned
self-referential CNAME resource records (i.e., resource records that describe a certain do-
main name as an alias of itself). An attacker could cause denial of service by sending a

request that concerned a self-referential CNAME record to a name server.

4.5 Related Work

In this section, we summarize and analyze existing approaches for protecting DNS.
Our goal is to present their merits and limitations. Readers are referred to [43, 44] for the
specification of DNS. Moreover, Albitz’s and Liu’s book [1] is an excellent reference for
DNS and BIND, the dominant implementation of DNS. Bellovin [5], Schuba and Spafford
[60], and Vixie [71] present vulnerabilities of DNS. The two main vulnerabilities studied
are cache poisoning and lack of data authentication.

To counter cache poisoning, Vixie [71] presents enhancements to BIND. Briefly,

"This feature has been disabled by default in BIND release 4.9.2.
8In BIND, the search directive can be used to override this default search heuristic.
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BIND version 4.9.3 checks the input resource records more carefully before caching them.
Moreover, it implements a credibility level scheme in which resource records from a more
credible source take precedence over those from a less credible one. Cheswick and Bellovin
[13] present a design for a DNS proxy (dnsprozy). In their design, the domain name space is
partitioned into regions called realms. A realm is served by a set of servers. Depending on
the query name of a DNS request, dnsprozy forwards the request to the servers responsible
for the corresponding realm. Certain resource records in response messages—those that do
not refer to realm to which the query name belongs, and those that satisfy a set of filtering
rules—are removed to protect the queriers. Eastlake and Kaufman [19] present security
extensions to DNS (DNSSEC) that uses cryptographic digital signatures to support data
authentication for DNS data. In DNSSEC, new resource record types are introduced for
public keys and digital signatures. Security-aware servers and security-aware resolvers can
use zone keys, which are either statically configured or learned by chaining through zones,
to verify the origins of resource records.

Section 4.5.1 describes Vixie’s work in hardening BIND. Section 4.5.2 describes
dnsproxy. Section 4.5.3 describes the DNS security extensions. Section 4.5.4 presents our

evaluation for these approaches.

4.5.1 Hardening BIND—Vixie’s Approach

Early versions of BIND (pre-BIND 4.9) [71, 5] trust all resource records appearing
in responses whose ¢d and destination port number match the query id and the source port
number of an outstanding query. Moreover, the query id and the source port number
used are quite predictable. Thus these name servers are vulnerable to cache poisoning,
and resolvers are vulnerable to getting incorrect information. Vixie [71] presents security

enhancements for BIND that fix some of its vulnerabilities.

Vixie’s Security Enhancements for BIND

Reference [71] and the source code of BIND 4.9.5 indicate that the following

enhancements have been implemented in BIND:

e Query names stated in responses are matched against those stated in queries sent by
name servers and resolvers: The query name in a response must be identical to that

in the corresponding query; otherwise, the response will be dropped.
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® Resource records are filtered before caching: In old BIND, name servers completely
trust and cache all resource records in a DNS response, even those resource records
that are not related to the query name. As of BIND 4.9.3, resource records are
filtered based on their “relevance” to the query name. A resource record r in the
answer section is accepted if r’s name is the same as or is a canonical name of the
query name. A resource record r in the authority section is rejected if there is a
dangling CNAME resource record in the answer section. Moreover, if r is of type
NS, r is accepted if (1) the query name or its canonical name belongs to the zone
designated by r’s name, or (2) there is no CNAME resource record in the answer
section and r’s name belongs to a domain managed by the responding server. The

pseudo code of Vixie’s filtering algorithm is shown in Appendix A.

o Different sources have different credibility levels: Resource records are tagged with
credibility levels depending on how they are obtained (e.g., zone data or authori-
tative answer). More credible resource records preempt less credible ones from the
cache. On the other hand, less credible resource records cannot preempt more cred-
ible ones. Credibility levels, from the most credible to the least credible, are zone

9

data, authoritative answers?, answers'?, additional data'’, and cache data'?.

e The time-to-live (TTL) fields for resource records in the additional section are de-
creased more rapidly: The TTL of additional data—Iless credible data sent by other
name servers—are decreased by 5% after each access. As a result, those resource

records will be purged from cache sooner.

o Abnormal responses are logged: An abnormal response can be any of the following:
(1) Responses coming from an address the server has not queried; (2) Responses
containing resource records in the answer section that do not concern the query
name or its canonical name; (3) Responses containing bad referral. These log data

may be useful for post-mortem analysis.

“Resource records in the answer section of a response whose authoritative answer flag is set.

0Resource records in the answer section of a response whose authoritative answer flag is clear or those
in the authority or additional sections that correspond to a system priming query.

1 All resource records in a response that are neither authoritative answers nor answers.

2Resource records used for root server hints.
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Examples of Erroneous Responses Countered by the Enhancements

Suppose a name server queries an authoritative server for hack.com to obtain the

IP address of hl.hack.com. (The query is depicted in Figure 4.3.) If the name server of

Header OPCODE=SQUERY

Question | QNAME=H1.HACK.COM, QCLASS=IN, QTYPE=A
Answer <empty>

Authority | <empty>

Additional | <empty>

Figure 4.3: Example query.

hack.com is compromised, it may return the response depicted in Figure 4.4. However, the
response will be dropped and logged (classified as a malformed response) because of the
mismatch between the query name in the question section of the response (i.e., hl.good.edu)

and that of the query. In another example, depicted in Figure 4.5, the compromised name

Header OPCODE=SQUERY, RESPONSE, AA

Question | QNAME=H1.GOOD.EDU, QCLASS=IN, QTYPE=A
Answer H1.GOOD.EDU 86400 IN A 128.120.56.188
Authority | <empty>

Additional | <empty>

Figure 4.4: Erroneous Response #1.

server attaches erroneous resource records to the response. The resource record in the
answer section will be rejected because h2.good.edu is not equal to or a canonical name
of hl.hack.com. The resource record in the authority section will also be filtered out
because cs.good.edu does not belong to hack.com, the domain managed by the responding
server. Let us further assume that our server already has a resource record concerning the
IP address of bell.cs.good.edu (i.e., a type A resource record) and that resource record is
tagged as an “authoritative answer”, the erroneous “A” resource record in the additional

section of the response cannot replace the one in cache because of its lower credibility level.
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Header OPCODE=SQUERY, RESPONSE, AA

Question | QNAME=H1.HACK.COM, QCLASS=IN, QTYPE=A

Answer H2.GOOD.EDU 86400 IN A  128.120.56.189
Authority | CS.GOOD.EDU 86400 IN NS BELL.CS.GOOD.EDU
Additional | BELL.CS.GOOD.EDU 86400 IN A  128.120.55.8

Figure 4.5: Erroneous Response #2.

4.5.2 Dnsproxy

Dnsprozxy is an application-level proxy for DNS. Although it is designed to work
with firewalls, it can be used standalone. The goal of dnsprozy is to control exposure of
internal machines to DNS data that come from machines outside the firewall. Dnsprozy pre-
vents external (untrusted) name servers from confusing internal hosts about DNS data that
concern the “inside” realm—resource records that concern internal domain names, that as-
sociate host names to internal IP addresses, or that concern root name servers. As a result,
internal machines can depend on name-based authentication for services such as rlogin, rsh,
rcp, and NFS. Moreover, for sites that manage their own internal DNS, dnsprozy can pre-
vent external name servers from confusing internal servers about where the root servers
are. In this case, internal servers, except the internal root servers, should never learn the
information about the external root servers.

The domain name space is partitioned into the internal realm and the external
realm'®. The former covers the domains that are considered internal or trusted. The
external realm covers all other domains. Moreover, a realm is served by a set of name
servers. Dnsprozy serves as a switch: When dnsprozy receives a query, it forwards the
query to a server of the corresponding realm. Dnsprozy also serves as a filter: When
dnsprozy receives a response, it checks the response and drops the whole response or some

of its resource records if one of the following conditions are met'*:
e Malformed resource records;

o Mismatches between the query names in the query and the response;

13 Dnsprozy can be extended to handle more than two realms. For example, one can configure dnsprozy to
have a set of trusted realms and to associate servers to manage these realms. Vixie also suggested a similar
idea to lessen the security problem of DNS: “A resolver can be configured with a static map of domains to
name server addresses, allowing queries to be forwarded directly to appropriate name servers” (p.211, [71]).

"“The first three checks are also performed in Vixie’s BIND enhancements. (See Section 4.5.1.)
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e Mismatches between the expected and the actual IP addresses from which a response

comes;
e Resource records concerning the internal realm returned by external servers;

e Resource records that satisfy a resource record blocking rule. The rules used in [13]

block all NS records and A records that associate host names to internal IP addresses.

The filtered responses are then returned to the internal queriers. We use an example
to illustrate the last two filtering conditions. Suppose the internal realm is defined by
the domain good.edu and the corresponding IP network address is 128.120.*.*. When
dnsproxy receives a query as shown in Figure 4.3, it forwards the query to a server for
the external realm because the query name, hl.hack.com, belongs to the external realm.

Suppose the external realm server then returns the response as shown in Figure 4.6. The

Header OPCODE=SQUERY, RESPONSE, AA

Question | QNAME=H1.HACK.COM, QCLASS=IN, QTYPE=A
Answer H1.HACK.COM 86400 IN A  128.120.56.189
Authority | HACK.COM 86400 IN NS NS.HACK.COM
Additional | BELL.CS.GOOD.EDU 86400 IN A  128.120.55.8

Figure 4.6: Erroneous Response #3.

resource record in the answer section will be dropped because it maps a host name to an
internal IP address. The authority record will be removed because all NS records from
the external realm are not trusted. Exposing internal name servers to external NS records
is dangerous because, depending on the deployment option, internal servers may bypass
dnsprory and contact the external servers directly. Finally, the resource record in the
additional section will be dropped because it concerns a domain name that belongs to the
internal realm.

There are three main configurations to deploy dnsprozy. First, we can reconfigure
resolvers to send their queries to dnsprory instead of a name server. For BIND, that
translates to modifying resolv.conf on the affected hosts. A variant of this option is to
add a “forwarder” entry in the boot file of named to point to the address of dnsprozy . If
this name server cannot resolve a query, it forwards the query to a host in the forwarder
list. Second, we can run dnsprozy on internal root server machines. This option assumes

that the site maintains its own internal DNS. When a name server cannot resolve a query,
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it sends the query to an internal root server. If the query is for the outside realm, the
dnsprozy running on that root server forwards it to an outside realm server. Third, we can
run dnsprozy on dynamic packet filters. DNS queries for the external realm are intercepted

by dynamic packet filters and then forwarded to dnsprozy.

4.5.3 DNS Security Extensions

Security extensions of DNS, called DNSSEC, have been proposed [19, 24] to sup-
port DNS data authentication. TIS has implemented a prototype that supports DNSSEC
[67]. DNSSEC adds new resource record types'® to DNS for public keys (KEY) and crypto-
graphic digital signatures (SIG). Signature records are created for DNS data as well as for
public keys. A DNS client or a DNS server can use these records to verify the authenticity
of the corresponding data.

Each secure zone is associated with a pair of keys'®—a private zone key and a
public zone key. The private key, which must be kept secret, is used to sign the zone’s
authoritative resource records. The public key is used by other servers to verify the authen-
ticity of signatures generated by this zone. For example, MD5/RSA is a digital signature
algorithm used in DNSSEC. A SIG record is created for each record set defined by a do-
main name-type combination. For example, the zone cs.ucdavis.edu creates a SIG record
for all A record(s) of h.cs.ucdavis.edu, which give the IP address(es) of the domain name
h.cs.ucdavis.edu. Suppose MD5/RSA is used as the signature algorithm. MD5 is first ap-
plied to the resource record set. The hash value is encrypted using the private key of
the zone. Then the encrypted value is stored in the SIG record. To support public key
distribution, SIG records are also created for public keys of super-zones and sub-zones. For
example, the root zone has a KEY record and the corresponding SIG record for the public
key of the edu zone. This SIG record is created using the private key of the root zone.

To verify the authenticity of a resource record set, the verifier uses the resource
record set, the SIG record, and the verified KEY record for the authoritative zone. Again,

suppose the MD5/RSA signature algorithm is used. The KEY record, which contains the

15There is another new resource record type proposed in [19], NXT, to allow an authoritative server
to declare the non-existence of certain resource records. Because that record type is not related to our
discussion, we do not discuss it here. Interested readers may consult [19] for details.

161t is possible to have more than one key pairs associated with a zone. For example, when a zone key
is changed, there is a transition period during which both the old key pair and the new key pair are used
simultaneously.
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public key of the authoritative zone, is used to decrypt the value stored in the SIG record.
The result is then compared to the result of applying the hash function MD5 to the record
set. A match means the record set is authentic.

There are two ways that a server can learn whether a KEY record (i.e., the corre-
sponding public key) is authentic for a zone. First, the server may be configured with the
KEY records of a set of trusted zones. If the zone in question is one of these trusted zones,
the server knows the authenticity of this KEY record. Second, the server can discover the
public keys for other zones through a process called chaining. The basic idea is to establish
a trusted path from the zone in question to a trusted zone. For example, suppose the server
is configured with the public key of the root zone (i.e., the root zone is a trusted zone).
Moreover, suppose the root zone has created a SIG record for the KEY record of the edu
zone, and the edu zone has created a SIG record for the KEY record of the ucdavis.edu zone.
If the server needs to find the authentic KEY record of the ucdavis.edu zone, the server can
first find the authentic KEY record of the zone edu and use it to verify the authenticity of
the KEY record of the ucdavis.edu zone. This is a recursive process that keeps going until
a trusted zone is reached. In this case, the authenticity of the KEY record of the edu zone
can be verified using the SIG record generated by the root zone and the KEY record of the
root zone.

The specification defines two ways to expire DNS records: time-to-live (T'TL) and
signature expiration time. The former is the same as that used in the original DNS—When
the TTL of a resource record is decremented to zero, this record should be discarded. The
latter, which requires that hosts using DNSSEC to have “reasonably” synchronized clocks,

specifies an absolute time at which a signature record becomes invalid.

4.5.4 FEvaluation

In this section, we evaluate the different aforementioned approaches to protect

DNS. Our criteria for evaluation are as follows:

1. Effectiveness: Does the proposed solution solve the problems completely? If not, then
how much more difficult is it to launch an attack? Is the effectiveness dependent on

the security of other sites?

2. Compatibility: Does the solution require changes to the DNS protocol? Is it compat-

ible with existing DNS implementations?
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3. Deployment: How many DNS servers and resolvers need to be changed, especially
those in other administrative domains? How much administrative effort is required
to implement and tune the proposed scheme (e.g., modifying and installing new
software, and reconfiguring existing systems)? Is the solution applicable to specific

environments only (e.g., requiring a firewall)?

4. Scalability: On the site level, does the solution works for a large site in which there
are many name servers? On the Internet level, does it affect the scalability of DNS?
For example, suggestions to change DNS from a distributed database system design

back to a centralized database system design are unacceptable.

5. Recurring costs: How much additional processing, latency, and network bandwidth

overheads are incurred?
6. Solution simplicity: Is the solution simple to design and to implement?

In the rest of this section, we use the above criteria to evaluate the BIND enhancements

[71], dnsprozy [13], and the DNS security extensions [19].

Vixie’s Hardening BIND Approach

Vixie’s solution preserves the existing DNS protocol, is as scalable as the DNS
design, incurs minimal recurring costs, and is relatively simple to implement.

The BIND enhancements prevent cache poisoning in some cases as discussed in
Section 4.5.1. However, BIND 4.9.5 is still vulnerable to cache poisoning attacks in some
other cases. For example, one can trick a name server to accept an arbitrary resource
record using an appropriate CNAME!” resource record in the answer section of a response.
BIND 4.9.5 is weak in coping with spoofing attacks. Another problem with the BIND
enhancements is that it needs to be deployed Internet-wide to maximize its effectiveness.
It is not sufficient to upgrade the BIND server of a site. In the following, we explain these
weaknesses of the BIND enhancements in detail.

An attacker can construct an erroneous response message that uses a CNAME
resource record in the answer section to introduce arbitrary resource records, as noted

in [71]. Specifically, the attacker can use a CNAME record in the answer section of the

17Recall that a CNAME resource record contains a domain name which identifies the canonical name of
an alias.
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response that states the query name is an alias for another domain name. It is important
to note that the canonical name can be any domain name. Resource records in the answer
section will be accepted if they describe the canonical name. Moreover, resource records
in the authority section will be accepted if they are NS'® resource records of the domains
in which the canonical name lives (i.e., the authoritative zone of the canonical name and
its ancestor zones). Suppose a server queries another name server for the IP address of
h1.hack.com (as shown in Figure 4.3). Figure 4.7 depicts an example response that can

poison the cache of this server. Because there is a CNAME record that says h2.good.edu

Header OPCODE=SQUERY, RESPONSE, AA
Question | QNAME=H1.HACK.COM, QCLASS=IN, QTYPE=A

Answer H1.HACK.COM 86400 IN CNAME H2.GOOD.EDU
H2.GOOD.EDU 86400 IN A 128.120.56.189

Authority | GOOD.EDU 86400 IN NS BELL.CS.GOOD.EDU

Additional | BELL.CS.GOOD.EDU 86400 IN A 128.120.55.8

Figure 4.7: Erroneous Response #4.

is the canonical name of hl.hack.com, the query name, the A record of h2.good.edu in the
answer section will be accepted and tagged with credibility level “answer”. Moreover, the
NS record in the authority section will also be accepted because h2.good.edu belongs to
good.edu. [71] claims that the CNAME problem cannot be solved without changing the
DNS protocol. The DNS specification [44] specifies that “unsolicited responses or resource
records other than that requested” should be discarded. However, the resource records
associated with the canonical name are legitimate according to the specification.
Resource records in the additional section are not filtered in BIND 4.9.5 (c.f.
Appendix A). There are two defenses employed by BIND to lessen this problem. First,
as mentioned in Section 4.5.1, BIND removes certain “additional” records from the cache
sooner. Unfortunately, this defense can be circumvented easily because an attack may not
require erroneous data to stay in the cache for a long time or an attacker can re-poison the
cache after the corresponding entries expire. Second, “additional” records are considered to
be less credible than records from more credible sources such as authoritative answers. Thus
“additional” records are simply removed when the same data from a more credible source

arrive. Furthermore, “additional” records are ignored if the cache has already obtained

18Recall that an NS resource record contains a host name corresponding to an authoritative name server
for the specified domain.
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the data from a more credible source. The effectiveness of this second defense depends
on the availability of the data from a more credible source, which cannot be guaranteed.
The “segmented cache” proposed in [71] may be used to cope with the “additional” record
problem. A segmented cache stores data in different cache segments according to their
credibility levels and each cache lookup can specify a set of cache segments to be searched.
“Additional” records are stored in a specific segment, which is used to assist resolution (e.g.,
locating authoritative servers during recursive resolution) but never be used to answer a
query. This segmented cache proposal, which involves major changes to the BIND cache
design, is not yet implemented.

BIND 4.9.5 is weak in protecting itself from spoofing attacks. To spoof a response,
an attacker needs to know the port number and the query id used by the querier. BIND
servers always use the same port number for receiving TCP or UDP!? queries and for send-
ing UDP responses. Moreover, BIND servers open a new socket for each TCP request, and
BIND clients open a new socket for each TCP or UDP request. As noted in [71], operat-
ing systems tend to assign port numbers to sockets using the least-recently-used strategy,
which makes port number usage predictable. The query id of successive queries used by
BIND servers differ by exactly one. Although the query id variable can be initialized with
a random number at startup time, it is possible to find out the latest query id used if an
attacker has control over a name server: The attacker can just trick the target name server
to query the name server under the attacker’s control. Then the attacker can easily predict
the next query id the target server will use.

Upgrading enhanced local servers alone is not sufficient because they depend on
other servers for data over which they do not have authority. Suppose a local server
queries an authoritative server of hack.com for the IP address of hl.deptl.hack.com. If
that hack.com server is cache-poisoned, it may return an incorrect response concerning
its domain and the local server will accept the response. Because of the large number
of BIND servers running under different autonomous administrative domains, having all
BIND servers on the Internet upgraded may take some time. In addition, many vendors
still ship “obsolete, buggy versions of BIND with their operating systems” [59]. There are
name servers running on non-Unix platforms (e.g., Windows NT, OS/2, VMS) whose code

is derived from BIND or independent of BIND. It probably will take more time for the

BIND queries and responses are usually sent using UDP.
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BIND enhancements to be incorporated in them.

The Dnsproxy Approach

Dnsprozy is useful to prevent cache poisoning attacks that concern DNS data re-
lated to the internal realm, and is marginally useful for preventing some spoofing attacks
when used with a firewall. Dnsprozy is compatible with the existing DNS protocol and
DNS implementations. Depending on the deployment option, dnsprozxy ranges from mod-
erate to satisfactory with respect to ease of deployment, and ranges from moderately to
satisfactorily scalable. Finally, dnsproxy incurs acceptably low recurring costs, and is quite
simple to implement.

Dnsproxy protects internal machines from certain cache poisoning attacks. An
external server cannot supply DNS data that concern the internal realm (i.e., the pro-
tected domain(s)). However, dnsprozy may not be useful for DNS data that belong to
the external realm; the external realm servers are ordinary DNS name servers that can be
cache-poisoned. Moreover, dnsprory may not be useful if an internal server is compromised.
It is because erroneous records in responses may not be filtered out, and queries for the
internal realm may not pass through dnsproxy for performance reasons. When used with
firewalls, external machines cannot masquerade as internal realm servers, which live on the
other side of the firewalls. Thus dnsprozy may prevent spoofing attacks that concern the
internal realm.

There are three main options for deploying dnsproxy. Those options differ in

scalability and ease of deployment.

e Reconfiguring resolvers to use dnsproxy for resolution: This option is best to protect
a small number of machines. In such a case, only these affected machines need to be

reconfigured to send their queries to dnsprozy instead of a name server.

o Running dnsproxy on internal root servers: This option is suitable for a large site. If
the site has its own internal DNS, we only need to reconfigure the internal root servers
to use dnsprozy. Not all queries need to pass through dnsprozy; internal NS records
are passed to internal servers so that they can contact other internal servers directly.
All queries concerning the external realm are still processed by dnsprozy. This option
is more scalable and more efficient than the first one. However, using dnsprozy with

two DNS trees (i.e., internal and external trees) may cause inconvenience because
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machines that live in both sides of the firewall (e.g., portable computers) may have
to keep two different configuration files, one for internal root servers and one for
external root servers. Moreover, those machines have to determine which set to use

for a given query.

o Running dnsproxy on dynamic packet filters: No reconfiguration of the hosts is nec-
essary. Internal hosts can have the same view as outsiders because NS records from
external servers need not be filtered out. Internal servers can contact other inter-
nal servers without using dnsprozxy as an intermediate. Thus, similar to the second
option, this option is scalable. However, this option is applicable only if dynamic
packet filters that can intercept outgoing DNS queries and pass them to dnsprozy are

available.

DNSSEC

DNSSEC is moderately effective in coping with cache poisoning attacks, and is
very effective for preventing spoofing attacks. DNSSEC requires some changes to the DNS
protocol, yet allowing the secure DNS and the original DNS to run concurrently. DNSSEC
is moderately easy to deploy, and is as scalable as the original DNS design. However,
DNSSEC incurs moderately high recurring costs, and is quite complicated to design and
to implement.

Performing data authentication alone is insufficient to solve the cache poisoning
problem, which deals with trusts among name servers. A compromised name server can
publish authentic yet erroneous DNS data. This may occur if a name server is subverted??,
a private key of the zone is compromised, a zone data file is incorrectly configured, or a
system administrator turns bad. Note that it only takes one compromised zone to carry
out cache poisoning attacks.

To protect against spoofing attacks, strong cryptographic data authentication is
needed. By using signature and zone key records, a DNS server/client can verify the
authenticity of resource records, if there is a trusted path from a trusted zone to the zone
in question.

DNSSEC, like the original DNS, does not have an explicit revocation mechanism.

20The specification [19] recommends the private keys of zones to be kept offline, which tradeoffs security
with convenience.
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As mentioned in Section 4.5.3, DNSSEC has two ways to expire resource records. A
resource record is expired when the time-to-live (TTL) field becomes zero or the expiration
time in the signature record is reached. It might be a problem if only the former is used
to expire resource records because signature records can only protect the original TTL in
those records; the current TTL cannot be protected. As a result, an attacker may be able
to replay expired resource records.

DNSSEC incurs moderately high recurring costs. In particular, CPU time is
needed to sign and to verify signatures, network bandwidth is needed to transmit additional
resource records, and memory is needed to store additional records in name servers.

DNSSEC has similar deployment problems as dnsproxy does. The new secure
DNS has to be widely deployed to maximize its usefulness. In fact, DNSSEC face more
obstacles than dnsprozy. First, it may take some time before public key cryptography
is widely used. Second, there is additional administrative overhead associated with key
management. Third, in addition to protecting server-server communication, resolver-server
communication also needs to be protected. There are a lot more DNS clients than name
servers. Thus, it probably will take even longer before DNSSEC is widely deployed to

protect resolver-server communication.

Summary

We summarize the evaluation of Vixie’s BIND enhancements [71], dnsprozy [13],
and DNSSEC [19] in Table 4.1. We use the following symbols to denote our rating levels:
® for excellent; @ for good; ® for neutral; & for bad.

| Criteria | Hardening BIND | Dnsproxy | DNSSEC

Effectiveness

Cache Poisoning @ @ O]

Spoofing e o/o% ®
Compatibility ® ® O]
Deployment @D o/ /o O]
Scalability ® o/ /% ®
Recurring Costs ® @ O]
Solution Simplicity ® @ S)

Table 4.1: Summary of Evaluation.
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4.6 QOur Approach

We present a detection-response approach to protect DNS. The goals for our DNS
work are not only to satisfy the aforementioned criteria, but also to provide additional
assurance for our solution using formal methods. Our approach consists of the following

steps:
e Declare threats: Cache poisoning and spoofing.

o Define our security goal for DNS: The DNS data used by a name server should be

consistent with those disseminated by the corresponding authoritative name servers.

e Develop DNS model: We characterize DNS clients and DNS servers using formal

specifications.

o Develop DNS wrapper: We develop a formal specification for a DNS wrapper that
enforces our security goal. Based on the specification, we implement the DNS wrap-

per.

Our work is inspired by Ko, et al.’s [31, 32] specification-based approach for in-
trusion detection. In Ko, et al.’s approach, specifications are developed to describe the
expected security-related behavior of privileged programs—specifically, behavior related
to access control or sequencing of events. Using these specifications as oracles, program
executions are monitored to detect exploitations of the vulnerabilities of these programs.

Unlike specification-based intrusion detection, our approach is for prevention??.

In our
approach, we characterize a “weakened” behavioral model for a process (e.g., DNS) using
formal specifications. To simplify this model, we exclude functionalities of the process that
are known to be insecure and those that we wish to strengthen. Moreover, if there are mul-
tiple implementations for the process, the model includes only the common functionalities
among these implementations. If our solution is able to protect the process character-

ized by this model, it is strong enough to protect all these implementations. We formally

characterize a wrapper that strengthens the process model to achieve our security goal.

211t depends on whether firewalls are used with dnsprozy.

*>There are a few options for deploying dnsprozy [13]: Reconfigure resolvers to point to a dnsprozy; run
dnsprozy on internal DNS root servers; run dnsprozy on dynamic packet filters.

23 Although our approach is prevention-based, one could use the formal specifications as the basis for an
intrusion detection component that protects DNS: When the component detects a suspicious DNS packet,
it generates a warning instead of dropping the packet.
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The specification for our wrapper addresses trust among name servers, the kind
of information that should appear in a DNS response, and message authentication. Our
wrapper examines the incoming and the outgoing DNS messages of a protected name server
to detect those messages that could cause violations of our security goal. When the wrapper
does not have enough information to determine if a DNS message is a threat, it collaborates
with the corresponding authoritative name servers to obtain the information needed. When
a DNS message is diagnosed to be a possible threat with respect to our security goal, this
message is recorded in a security log and dropped instead of being forwarded.

We consider trust among (possibly malicious) network components. Because of
scalability reasons, name servers are managed by different administrative domains. A name
server should not blindly trust other name servers. Instead, we argue that information from
a name server should be trusted only if that server has authority over that information.
In some cases, a detection component by itself cannot determine whether a DNS message
represents an intrusion; it may have to collaborate with some authoritative sources to
perform diagnosis (also called wrapper verification below). This aspect of trust leads to
our distributed cooperative detection and response design.

We consider the issue of message authentication, which is important for protect-
ing network services in general. In DNS, when a query is sent to a name server, an attacker
could masquerade as that name server and send back a forged response containing incorrect
DNS data. The cryptographic extensions proposed in DNSSEC support message authen-
tication for DNS. Our work handles some message authentication attacks, which is useful
before DNSSEC is widely deployed.

4.7 System Model

In our model, there are two types of processes: DNS servers and DNS clients
(or resolvers). These processes communicate with each other through message passing.
Resolvers only communicate with servers; servers can communicate with other servers in
addition to communicating with resolvers. There are three kinds of events for a process:
message send, message receive, and internal events. These two types of processes are

denoted by Server and Resolver respectively.

Server U Resolver = Process

Server N Resolver = ()
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Basically, we model DNS clients and DNS servers as an object that maintains a view
on DNS data. The view may be changed only through communicating with other DNS
components (i.e., sending DNS requests and receiving DNS responses) or by timeouts for
DNS data.

We use the Vienna Development Method (VDM) to specify our system model,
because VDM provides a formal language for specifying data and the associated operations,
and includes a framework to perform refinements of data and operations. Another reason
is that VDM provides a basis for performing formal verification, which makes it more
convenient to extend our work in the future. Most of the symbols used in VDM are
standard mathematical symbols. We will describe the non-standard or less commonly used
ones as we need them. Readers are referred to [29, 2] for more details on VDM.

In the following, Section 4.7.1 presents our DNS data model. Section 4.7.2 for-
malizes the DNS concepts of trust, authority, and delegation. Sections 4.7.3 and 4.7.4
characterize our DNS client model and our DNS server model respectively. Section 4.7.5

discusses our assumptions about DNS. Section 4.7.6 presents our security goal for DNS.

4.7.1 DNS Data

DNS messages (of type Msg) are either a query (of type Query) or a response (of
type Resp).

QueryU Resp = Msg

QueryN Resp = ()

A message m of type Msg consists of the following sections: header, question, answer,
authority, and additional. We denote these sections of m by Hdr(m), Q(m), Ans(m),
Auth(m), and Add(m) respectively. The header section includes a query ID?4, an opcode?3,
a truncated message flag?®, a recursion desired flag?”, and a response code?®. We denote

these fields of m by id(m), opcode(m), tc(m), rd(m), and rcode(m) respectively. The

24Recall that query IDs in DNS messages are used to facilitate name servers’ matching up responses to
outstanding queries.

2Recall that the opcode of a DNS message distinguishes between different types of queries—standard
queries and inverse queries. A standard query looks for the resource data given a domain name. An inverse
query looks for the domain name given resource data.

26The truncated message flag indicates whether the DNS message is truncated. Message truncation
occurs when the message length is greater than that allowed on the transmission medium.

2T A querier requests recursive resolution to be used for the query by setting the recursion desired flag.

28The response code field is used to indicate errors and exceptions.
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question section consists of a domain name, a query type, and a query class. The answer,
the authority, and the additional sections consists of resource records (RR). We denote the
set of resource records of a message m by RRof(m). A RR consists of a domain name, a
type, a class, a 32-bit TTL (in seconds), and a resource data field. For a resource record
r, we denote these fields by dname(r), type(r), class(r), ttl(r), and rdata(r) respectively.

DNS manages a distributed database. The database is indexed by a tuple (dname,
type, class) of type Idz. The range of the database is a set of resource records, abbreviated
as RR. To denote this database type in VDM, we use a map type DbMap : Idz — RR—set.
A map type T = D = R has domain D and range R. The domain and the range of T are
denoted by dom(T') and rng(T') respectively. A map of type T is a set that relates single

items in D to single items in R.

RRType = {A,PTR,NS,CNAME, MX, SOA, HINFO, ...}
RRClass = {IN,...}
TTL ={teZ|0<t<2%2-1}
Idz :: dname : DName

type : RRType

class : RRClass
RR : dname: DName

type : RRType

class : RRClass

ttl : TTL

rdata : RData

DbMap = Idz =+ RR-set

Db represents the data managed by a DNS. SubDomain captures the domain-
subdomain relationships. Given a domain d, the set of all the sub-domains of d is repre-
sented by SubDomain(d). A zone contains the domain names and the associated data of
a domain, except those that belong to a delegated domain. A zone is a contiguous part of
the domain name space that is managed together by a set of name servers. A zone may
have a set of delegated subzones, represented by the function SubZone. (In VDM, a func-
tion specification consists of two parts. The first part defines the argument types and the
result type, which are separated by the symbol “—”. The second part gives the function
definition.) For a zone z, ZoneData(z) contains all resource records whose domain names
belong to zone z, the zone cut data, and the glue data. The zone cut data describe the cuts
around the bottom of zone z: In particular the NS resource records of the name servers for

the delegated zones of z. If there are name servers for the delegated zones residing below
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the zone cut, the glue data contain the addresses of these servers.

Db: DbMap

SubDomain : Domain — Domain—set
ZoneData : Zone — DbMap

SubZone : Zone — Zone—set

Vz € Zone - SubZone(z) A

{cz | Irr € mgZoneData(z) - type(rr) = NS A dname(rr) # z A cz = dname(rr)}
Given a domain name d, a resource record class cr, and a set of resource records rrs,
Canonical(d, cr,rrs) returns a set of canonical names for d of class ¢r that can be deduced
from the resource record set rrs. We use a recursive definition for Canonical because DNS

allows an alias for a domain name to have an alias.

Canonical : DName x RRClass x RR—set — D Name—set
V d € DName, rc € RRClass, rrs € RR—set - Canonical(d,rc,rrs) A
{c| (c=d)V (3 err € rrs - dname(crr) = d A type(crr) = CNAMEA
class(err) = er A ¢ = rdata(crr))V
(3 i € DName -i € Canonical(d,cr,rss) A ¢ € Canonical(i, cr,rss))}
Every process maintains its view of the database. The view of a server, say s, can be
partitioned into the authority part (denoted by Viewgyn(s)) and the cache part (denoted
by Viewcqche(s)), where the former takes precedence over the latter. The map overwrite
operator 1 takes two map operands and returns a map that contains all the elements in
the second operand and those in the first operand whose domain does not appear in the

domain of the second operand. For a server that is not authoritative for any part of the

database and for a resolver, the corresponding Viewgy is 0.

Viewgys, : Process — DbMap
Viewegehe : Process — DbMap
View : Process — DbMap
Vp € Process - View(p) A Viewcache(p) T Viewgun (p)
The function Fresh gives the part of a DbMap that corresponds to resource records with

positive TTL.
Fresh : DbMap — DbMayp

Vdm € DbMap,i € dom(Db) - Fresh(dm)(i) A

if Vrr € dm(i) = ttl(rr) > 0 then dm(i) else )
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4.7.2 Trust, Authority, and Delegation

A DNS process may trust a set of servers by accepting all the messages sent by
those servers. For example, a stub resolver trusts all DNS data it obtains from a name

server. We denote this kind of trust relationship by TS.

TS : Process — Server—set

Some servers are said to be authoritative for a zone; their views on the zone data define
them. AuthServer maps a zone to the list of authoritative servers. AuthAnswer defines
the mapping from an index to the authoritative answer, defined by the view of the an
authoritative server on the index. Authoritative returns true if and only if every resource

record in the input resource record set is authoritative.

AuthServer : Zone - Server—set

AuthAnswer : Idr — RR—set

Vi € dom(Db) - AuthAnswer(i) =
let z € Zone A p € Process A i € domZoneData(z) A p € AuthServer(z) in
Viewautn (p) (1)

Authoritative : RR—set — Boolean

Vrrs € RR—set - Authoritative(rrs) =
Vrr € rrs - rr € AuthAnswer((dname(rr), type(rr), class(rr))

For a server s, ZoneDelegated(s) is defined to be the set of zones delegated by s.

ZoneDelegated : Server — Zone—set
ZoneDelegated(s : Server) = {cz | 3z € Zone - s € AuthServer(z) A cz € SubZone(z)}

4.7.3 Resolvers

A resolver is a DNS client that creates queries and sends them to a name server.
In our model, a resolver represents both an application and the DNS resolver invoked by
the application. Most DNS implementations (e.g., BIND) use stub resolvers, which rely on
the servers to resolve a name by means of recursive resolution. Our resolver model is based
on BIND resolvers. Resolvers are configured with a static list of DNS servers that provide
recursive resolution service. Resolvers trust the RRs of the response messages sent by

these servers. This set of servers is used to initialize the trusted server mapping 7'S. Note
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that a BIND resolver, implemented as library routines, does not use query results from
previous interactions with name servers to resolve the current query (i.e., BIND resolvers
are memory-less). We model this aspect by resetting Viewcqene to ) after a new query is
sent by the resolver.

There are three operations for a resolver—initializing the resolver (denoted by
Init,), sending a (recursive) query to a server (denoted by Send@,) and receiving a re-
sponse from a server (denoted by ReceiveR,). (The subscript r stands for “resolver”.)

Consider a BIND resolver br. The protocol for a resolver can be described as follows:

Call Init, with the addresses of a list of trusted servers;

while true

Call Send@, to send a query ¢ to a trusted server for recursive name

resolution;

Call ReceiveR, to receive a reply for ¢

An operation specification names the operation, specifies the parameters, and
specifies the result returned. The next part of the specification, indicated by the keyword
ext, defines the state components that will be accessed by this operation. The keywords
wr and rd specify whether the operation has read-write or read-only accesses to those state
components. The pre-condition and the post-condition of the operation are indicated by
the keywords pre and post. The pre-condition of an operation says that the operation is
defined if the input satisfies the predicate stated in the pre-condition. If the pre-condition
is satisfied before the operation is executed, the results of the operation will satisfy the
predicate stated in the post-condition after the operation is executed.

The specifications for the operations for resolvers—initialization, sending queries,
and receiving responses are shown below. Init, initializes a resolver, say br, with a list
of servers to be used in name resolution and initializes Viewgytn (br) and Viewcqene(br)
to empty sets. Send@, sends a query to a trusted name server (in 7°S(br)). The post-
condition of Send@, models the memory-less aspect of BIND resolvers. ReceiveR, receives

a response m from a name server s. If s is a trusted server and the response m answers
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the query that has been asked, Viewcgche(br) will be extended to include the RRs of m.

Init,(ss : Server—set)

ext wr : Viewgyn (br), Viewegene(br), T'S(br)

pre : true

post : Viewgysn (br) = 0 A Viewegene(br) = 0 AT S(br) = ss

SendQ,(q : Query, s : Server)
ext rd : TS(br)

ext wr : Viewegehe (br)

pre : s € T'S(br)

post : Viewegene(br) =0

ReceiveR,(q : Query, m : Resp, s: Server) r : RR—set

ext rd : TS(br)

ext wr : Viewegene (br)

pre : s € TS(br) AQ(q) = Q(m)

post : Viewegene(br) = {(i = rrs) | Irry € RRof(m)-

i = (dname(rry), type(rri), class(rri)) A rrs = {rrq | rro € RRof(m) A
i = (dname(rry), type(rry), class(rra))} }

4.7.4 Name Servers

Recall that a name server may provide two types of name resolution services,
namely iterative resolution and recursive resolution. For iterative resolution, if a name
server has the requested data in its cache, it returns the answer directly. Otherwise, it
sends referral data to the client. The referral data are name server information for a
domain that is closer to the authoritative domain with respect to the queried domain
name. For recursive resolution, a name server attempts to find the answer for the query
and then return it to the client.

There are four operations associated with a name server, namely ReceiveQs,
ReceiveR;, SendQs, and SendR;. (The subscript s stands for “server”.) They are for
receiving queries, receiving responses, sending queries, and sending responses respectively.

The protocol of the server can be described as follows:
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Call Inits with the root zone resource records, authoritative data, NS and A records
of child zones, and a set of trusted servers, if any.

for each DNS query received by calling ReceiveQ

If performing recursive resolution
while (query not resolved) {
Call SendQ; using s', a server “closer” to the authoritative zone;
Call ReceiveR; to receive the reply from s’
}
generate a reply based on View, and those replies
else /* iterative resolution */
generates a reply that contains the answer (if known) and

the NS and A records of s’

Call SendR; to reply to the querier

When a server s is initialized, it is given the NS RRs and the A RRs of a list of
name servers for the root domain, denoted by ROOT. In BIND, name servers treat those
RRs specially and do not remove them when their TTLs reach zero. The name server
uses those hints to fetch the RRs of the name servers of the root domain and cache them.
We combine these two steps in our model by putting RRs of the root name servers into
Viewegene- If a server is authoritative for a zone, say z € Zone, it will store the zone data
of z into its view. The zone data consists of the authoritative data for z, delegation data
(i.e., the NS RRs for name servers managing its delegated zones cz, Ycz € SubZone(z))
and glue data (i.e., the A RRs for name servers managing zones cz, Vcz € SubZone(z)).

The server s initializes the set of pending queries received, say pending(s), and the set of
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queries sent by itself, say mypending(s), to 0.

Inits(rootrrs : RR—set, authrrs: RR—set, childrrs: RR—set, ss: Server—set)
ext wr : Viewgytn (8), Vieweaene(s), pending(s), mypending(s), TS(s)
pre : true
post : Viewgyn(s) = {((dname(arr),type(arr), class(arr)),ars) | /*auth rr*/
arr € authrrs A ars = {rr € authrrs | (dname(rr), type(rr), class(rr)) =
(dname(arr), type(arr), class(arr)) } }A
Viewcgene(s) = {((dname(err),NS, class(crr)), crs) | /*NS for child zones*/
crr € childrrs A\ dname(crr) € ZoneDelegated(s) A type(crr) = NSA
crs = {rr € childrrs | (dname(rr), type(rr), class(rr)) =
(dname(crr), type(crr), class(crr))} }
{((dname(crr1), A, class(crry)),crs) | err1, crre € childrrs A /*A for child zones™/
type(crre) = NS A dname(crre) € ZoneDelegated(s)A
rdata(crry) = dname(crry) A class(cery) = class(cera) A type(err) = AA
crs = {rr € childrrs | (dname(rr), type(rr), class(rr)) =
(dname(crry), A, class(err))
{(ROOT, NS, class(rr)),rs) | rr € rootrrs A name(rr) = ROOT /*NS for root*/
Atype(rr) = NS Ars = {rr' € rootrrs | (ROOT,NS, class(rr)) =
(dname(rr'), type(rr'), class(rr’))} }1
{(ROOT, 4, class(rr)),rs) | rr € rootrrs A name(rr) = ROOT /*A for root*/
Atype(rr) = AArs = {rr' € rootrrs | (ROOT, A, class(rr)) =
(dname(rr'), type(rr'), class(rr')) } }A
pending(s) = OA
mypending(s) = OA
TS(s) = ss

When a name server s receives a query, Receive@; adds the query and the sender’s
identity into the state component pending(s). When server s sends out a query, SendQ;
adds the query and the identity of the queried server to the state component mypending(s).

The post-condition of Receive@s states that pending(s) after the operation is
equal to the union of pending(s) before the operation and a singleton set consisting of a

tuple representing the query received. For a state component z, T is used in the post-
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condition predicate of an operation to denote the state for « before that operation.

ReceiveQs(q : Query, from : Process)
ext wr : pending(s)
pre : true

post : pending(s) = {(q, from)} U pending(s)

SendQs(q : Query, to: Server)

ext wr : mypending(s)

pre : (g, to) & mypending(s)

post : mypending(s) = {(q,t0)} Umypending(s)

When server s receives a response from another server from that matches one
of the queries s has sent to from, s calls ReceiveR; to accept the response. ReceiveR;
then removes the corresponding entry from mypending(s) and adds the DNS data in the
response into its cache. These are described by the pre-condition and the post-condition
of ReceiveR;s. The post-condition also states that the DNS data already in Viewcgcpe($)

have precedence over those in the response message.

ReceiveRs(m : Resp, from : Server)

ext wr : mypending(s), Viewcqche ()

pre : 3(q, from) € mypending(s) - Q(q) = Q(m)

post : mypending(s) = mypending(s) — {(q, from) | q € mypending(s) A Q(q) = Q(m)}

A Viewegene(s) = {(i — rrs) | Irr1 € RRof(m) - i = (dname(rr1), type(rr1), class(rry))

A rrs ={rry | rre € RRof(m) Ai = (dname(rra), type(rrs), class(rre)) }

Fresh(Viewegene(s))

Given a query ¢ and a destination to, server s calls SendR; to send a response for

q- The post-condition of SendR; says that the resource records in the response are taken

from View(s), and s will remove (g,t0) from pending(s).

SendR(q : Query, to: Process) m : Resp

ext wr : pending(s)

ext rd : View(s)

pre : (g,to) € pending(s)

post : pending(s) = pending(s) — (g,t0) A Q(m) = Q(q) AVrr € RRof(m) -

(Fi € Fresh(View(s)) Ai = (dname(rr),type(rr), class(rr)) Arr € Fresh(View(s))i)
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4.7.5 Assumptions

In this section, we explicitly list our assumptions for DNS. They concern with
how name servers prioritize RR sets, the accuracy of authoritative DNS data, the effect
of changes on DNS data, the accuracy of delegation data, and the power of attackers on

eavesdropping DNS packets.

Assumption 10 Protected servers do not add an RR to the View quche 0f a process if an
RR that corresponds to the same indez already exists in the Vieweqche. Moreover, protected

servers prefer authoritative data over cache data.

Both of them hold for “good” servers (i.e., servers that behave according to the DNS
RFC [43, 44]). Some server implementations rank data from different sources at different
credibility levels. Moreover, data from a higher credibility level can preempt data from a
lower credibility level. We do not model data credibility levels in our work for the sake
of simplicity. As we will see later, because we only allow authoritative data to reach a

protected name server, this simplification does not affect the validity of our results.
Assumption 11 Data from an authoritative server are correct.

For example, if a server is authoritative for a machine A and the server says the IP address

of h is i, then we believe that the IP address of A is i.

Assumption 12 When a server attaches a TTL with t seconds to a resource record for

which the server is authoritative, the resource record will be valid for the next t seconds.

We state this assumption because there is no revocation mechanism in DNS. Without this
assumption, one cannot determine the validity of DNS data as soon as they leave their
authoritative servers. We argue that this assumption is reasonable. When a resource
record needs to be changed, the TTL of this resource record is usually decreased before

the changeover so that incorrect/stale records will timeout shortly after the changeover.

Assumption 13 For every zone, the delegation data and the glue data of its child zones
correspond to the NS RRs and the A RRs of the name servers of the child zones (i.e., no

lame delegation).
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Lame delegation is caused by operational errors: A system administrator changes the name
servers for a zone without changing the corresponding RRs in the parent zone or notifying

the system administrator of the parent zone about the change.

Assumption 14 Attackers cannot eavesdrop on the DNS packets sent between our pro-

tected servers and the legitimate name servers.

This is a limit we place on the attackers; if attackers can monitor the communication, our
scheme may fail to cope with spoofing attacks. In the future, when the use of DNSSEC
is widespread, we may drop this assumption and depend on DNSSEC to authenticate
messages. An implication of this assumption is that by randomizing the query id used, the
probability that an attacker can forge a response whose id matches the randomized query
id is negligible. Thus attempts for sending forged responses by guessing the query id used
can be detected by the wrapper.

4.7.6 Our Goal

Our goal is to ensure that the view of a protected name server agrees with those
of the corresponding authoritative name servers. This goal is specified using a VDM data
invariant. A data invariant of a data type specifies the predicates that must hold true
during the execution of a system. Our name server specification (c.f. Section 4.7.4), which
reflects the minimal functionalities of DNS servers among existing implementations, does
not satisfy this data invariant because it allows non-authoritative DNS data to reach a name
server. Thus for a name server s, Authoritative(rng View(s)) may not hold. In the next
section, we will present our solution—a security wrapper for protecting name servers. Our
DNS wrapper filters out DNS messages containing resource records that cannot be verified
as authoritative. Therefore, a protected name server that satisfies the data invariant can

be constructed by composing a name server and our DNS wrapper.

state DNS of
protectedNS : Server—set

inv mk-DNS(protectedNS) A

Vs € protectedNS - Authoritative(rng View(s))

end
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4.8 QOur DNS Wrapper

We use security wrapper (or simply wrapper) to refer to a piece of software that
encapsulates a component, such as a name server, to improve its security. Using wrappers
to enhance the security of existing software is not a new idea. Related works include TCP
wrapper [69], and generic software wrappers [23]. However, our work is different in that it
addresses problems that are DNS specific and it involves the use of formal specifications.

We considered two different retrofit approaches to secure DNS. The first approach
is a non-intrusive, conventional network intrusion detection approach. In this approach,
a network sniffer may be used to monitor the DNS traffic flowing into and out of a name
server, and to report suspicious DNS messages. The second approach uses a name server
wrapper that functions as a “smart” filter: All messages sent between a protected name
server and the rest of the world pass through the wrapper. Moreover, those that contain
suspicious DNS resource records are discarded and recorded in a log file. Section 4.8.1
justifies our choice of using a filter-based approach.

Consider a wrapper w. Wrapper w checks DNS response packets going to a name
server and ensures that they are authenticated?® and they agree with authoritative answers.
If a resource record in the response does not come from an authoritative server, wrapper
w locates an authoritative server and queries that server for the authoritative answer. To
locate an authoritative server for a zone, say z, the wrapper starts with a server, say s,
that is known to be an authoritative server for an ancestor zone of z, and queries server
s for authoritative servers of the child zone that is either an ancestor zone of z or z itself.
The search is performed by traversing the domain name tree, one zone at a time, until an
authoritative server for the DNS data being verified is located. Recall that the zone data
maintained by a server include the name server data of the delegated zones. Moreover, in
BIND, those data are rated at the highest credibility level. (We emulate this behavior by
initializing View,qche With the delegated zone data at startup time.) Thus those data will
not be overridden by incorrect resource records sent by an attacker. In other words, those
name server data (i.e., zone cut data and glue data) are immune from cache-poisoning

attacks. Our scheme exploits this fact to securely locate the authoritative servers.

¥ Data authentication checks can be performed by matching the query id’s of queries to those of responses,
or by using DNSSEC. However, the query id generation process used in some implementations of name
servers is quite predictable. Before DNSSEC is widely deployed, we need a means to protect these name
servers from spoofing attacks.



82

4.8.1 Wrapper-based Design Versus Sniffer-based Design

For the following reasons, we selected a wrapper-based design rather than a sniffer-
based design, which is commonly used in network intrusion detection work, to protect name

SEervers.

o The sequence of DNS queries and responses destined for a name server observed by
the wrapper is the same as that observed by the name server: A sniffer-based monitor
may suffer from problems like packet loss and packet reordering, causing it to miss
attacks. Packet loss is severe when a sniffer is overwhelmed by network traffic. A
sniffer and a name server may observe different packet orderings, say, when packets are
reordered by a router that is situated between them. If multiple responses for a query
(which may include forged responses) are received by a name server, in certain server
implementations, the first one will be used and the rest will be discarded. Thus if the
sniffer and the server may observe different packet orderings, the sniffer may not know
which of these responses will be used by the server. Running a multi-homed name
server3? exacerbates these problems: DNS messages for the multi-homed name server
may arrive from different networks. Thus sniffers that monitor these networks have

to coordinate among themselves to reconstruct the trace of DNS messages observed

by the name server.

e Security improvements such as network traffic encryption and DNS access control
may impede the ability of a sniffer to interpret DNS messages destined for a name
server and to obtain authoritative answers for wrapper verification: When IPSEC
(IP Security Protocol) [30] becomes widely used, DNS traffic between a name server
and other hosts or firewalls may be encrypted. Using a network sniffer may no
longer be feasible or desirable in this case because of the additional overhead of key
management and the potential reduction in security for distributing the secret keys to
the sniffer and protecting them. Access control mechanisms have been incorporated
into some DNS implementations. Specifically, a name server may be configured to
accept requests only from certain hosts. Thus a request sent by another machine (as
often the case in a sniffer-based design) may be ignored if that machine does not have

the permission to access the name server. In other words, the sniffer-based monitor

30 A multi-homed name server runs on a machine that is connected to two or more networks.
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might be unable to contact name servers authoritative for certain domain names to

obtain authoritative answers.

A wrapper can randomize the query id’s used by a name server to cope with some
spoofing attacks: The wrapper design allows us to increase the security of query id
generation without modifying the name servers. In some DNS implementations, the
query %d’s of successive queries generated by a name server always differ by one. In
other words, the query id’s are quite predictable. Before DNSSEC is widely deployed,
using the query id is one of the major means to detect counterfeit DNS response
messages. To masquerade as a particular server, an attacker needs to send a DNS
response whose query id is the same as that of the corresponding query. Unless the
attacker can monitor the DNS traffic between our name server and the legitimate
name server, randomizing the query id can be quite effective for detecting those
counterfeit response messages. In our design, the wrapper replaces the query ¢d with
a randomly generated query id (that differs with those of outstanding queries) and
maintains a translation table between the id used by the name server and the ¢d used
in the packets sent to the network. When a response is received, the wrapper checks
the translation table for a matching query id. If a match is found, the query id of the
response will be translated to that used by the protected server before the response
is forwarded. Otherwise, the response is dropped and put into the security log. This

query id translation technique cannot be used in a passive monitoring scheme.

Ptacek’s and Newsham’s [53] paper discussed some common vulnerabilities for sniffer-
based intrusion detection systems. Those vulnerabilities are not applicable to wrapper-
based systems: In [53], Ptacek and Newsham described techniques to defeat sniffer-
based intrusion detection systems, including denial of service attacks against a sniffer,
and insertion and evasion tricks to escape detection. For example, an attacker may
construct an IP packet with a calculated time-to-live value such that the sniffer-
based network monitor will accept the packet, but the destination host will not.
Another example is that an attacker may exploit the differences between a sniffer
and a host in handling packet fragmentation and packet reassembly: The attacker
can construct a packet fragment that is ignored by the sniffer-based network monitor,
but is accepted by the destination host. Attacks like these are possible because of the
decoupling between the sniffer and the protected hosts. Employing a wrapper that
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runs on the name server machine can either make the system “fail-close” (as opposed
to “fail-open”) or prevent those potential vulnerabilities. A protection mechanism is

fail-close if compromising its availability also makes the protected system unavailable.

4.8.2 Overview of the Specification of Our DNS Wrapper

To enforce our security goal defined in Section 4.7.6, we characterize (in VDM)
a DNS wrapper that prevents a name server from using DNS data that disagree with the
corresponding authoritative answers.

Let wdenote our DNS wrapper and ns denote the name server protected by w. Our
wrapper consists of two main parts: Wrappersq for processing queries, and Wrapper,r for
processing responses. (The subscript s stands for “server”.) Wrapper w processes queries
generated by ns before they are sent out, and processes queries destined for ns. Wrapper
w also processes responses destined for ns; those that are accepted by w will be forwarded
to ns.

When ns sends a query, wrapper w generates a random query id and uses it to
replace the original query id (used by ns). We use a translation table to track the mapping
between the random query id’s used by w and the original query id’s used by ns. We
use a map transTable: QID x QuestionSec — QID, initialized to null, to implement the
translation table, where QID is the type for a query id, and QuestionSec is the type for
the question section of queries. Using QID alone in the domain of transTable is insufficient
because w may err in translating query id’s when ns reuses its query id’s. Thus the domain
of transTable contains both the original query id and the question section of a query.

Function randomld: QID—set — QID returns a random query id that does not
appear in the input query id set. Wrapper w uses this function to randomize the id’s of
the queries generated by ns and to generate random query id’s for its own queries.

Function wfq: Query — Boolean returns true if the input query is well-formed;
otherwise, it returns false. Recall that there are two types of queries: standard and inverse.
A standard query looks for resource records given a domain name. Given a standard query,
wfg checks the question section of the query to determine whether it is well-formed. An
inverse query looks for the domain name corresponding to a given resource record. Given

an inverse query, wfg checks the resource record in the answer section for well-formedness.
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/* randomld(s) randomly picks a query id that does not appear in the QID-set s */

wfq : Query — Boolean [/* well-formed queries */
Vg € Query - wfg(g) &
if opcode(q) = STANDARD-QUERY
/* standard queries look for resource data given a domain name */
wfgs(Q(q)) A Ans(q) = null A Auth(q) = null A Add(q) = null
elseif opcode(q) = INVERSE-QUERY
/* inverse queries look for a domain name given resource data */
Q(q) = null A wfias(Ans(q)) A Auth(q) = null A Add(q) = null
wfgs : QuestionSec — Boolean [* well-formed question section */
/* returns true if the question section consists of a valid domain name,

a valid query type, and a valid query class; otherwise returns false */

wfias : AnswerSec — Boolean [* well-formed answer section for inverse queries */

/* returns true if the answer section consists of only one valid resource record

(of type A usually); otherwise returns false */

4.8.3 The Specification of Operation Wrapper,q

Wrappersq processes queries that involve ms. These queries can be partitioned

into two types. The first type corresponds to the queries that are sent to ns. The second

type corresponds to the queries that are generated by ns. These two types of queries are

treated differently. For the first type, wrapper w checks the queries to determine whether

they are well-formed (e.g., the answer, the authority, and the additional sections for a

standard query should be empty). For the second type, the wrapper generates a random

query %d, replaces the query id used in the original query by this randomly generated query

1d, and updates the local query id translation table.

Given a query ¢ sent from ns to a process to, Wrappersq returns p (which is the

same as g except the query id of ¢ is replaced by a randomized query id), and updates the

translation table transTable if necessary. For queries sent by processes other than ns (i.e.,

those sent by resolvers destined for ns), Wrappersq returns ¢ if the query is well-formed;

otherwise, it returns null.
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Recall that Q(m) denotes the question section of message m, and id(m) denotes
the query id of message m. Let HdrMinusId(m) denote the header section minus the id

field of message m.

Wrapper ,q(q : Query, to: Process, from : Process) p : Query
ext wr : transTable
pre : true
post : (from # ns A ufa(q) = p = ) A

(from # ns A not wfg(q) = p = null) A

(from = ns A (id(q), Q(q)) & dom transTable =

/* Our name server sends out a new query */

(id(p) = randomId(rng transTable) N Hdr MinusId(p) = Hdr MinusId(q)A

Q(p) = Q(g) A transTable = transTable T {(id(q), Q(q)) — id(p)}) A

(from =ns A (id(q), Q(q)) € dom transTable =
/* Our name server re-sends a pending query due to timeouts. The wrapper uses

transTable to modify the query id so that all query messages corresponding to

the same query will have the same query id */
id(p) = transTable(id(q), Q(q)) N Hdr MinusId(p) = Hdr MinusId(q)A

(Q(p) = Q(q) N transTable = transTable)

4.8.4 The Specification of Operation Wrapper,r

Wrappergsr processes responses that involve ns. Wrappersr has two compo-
nents: Wrappersrl and Wrappersr2. Wrappersrl screens out forged response messages.
Wrappersr2 verifies the response messages to ensure that they agree with authoritative
answers. There are two types of responses received by a wrapper: responses for queries
generated by the protected name server ns, and responses for queries generated by the
wrapper itself (for wrapper verification purposes). When a response for a query generated
by ns is received, the wrapper uses the query id translation table to restore the query id
(to the one used by ns) before passing the response to Wrapperr2.

Wrapper w uses a state component completed: Query x TimeStamp x QID to
keep track of the queries that have been responded. The TimeStamp field records the time
of receiving the first response. For queries generated by the protected name server, the
QID field records the randomized query id generated by the wrapper that replaces the

query id used by the protected name server. For queries generated by the wrapper itself,
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randomized query id’s are used and both the query id and the QID fields in completed have

the same value.

4.8.5 The Specification of Operation Wrapper,rl

Given a response message m sent by a process from to a process to, Wrappersrl
returns m (after converting the query id back to that used by the server if m corresponds

to a server-generated query) in the following cases:

e There is a matching query for m (either generated by the protected name server ns

or wrapper w itself).

e Response m corresponds to a query that has been responded within the past “thresh-

old” seconds (explained below).

Otherwise, Wrappersrl returns null. In other words, when the wrapper observes a forged
response with an incorrectly guessed query id or a forged response that does not correspond
to any recent queries, Wrappersrl returns null. Sometimes a name server/wrapper sends
out multiple copies of a query (possibly to more than one name servers), which happens
when the internal timer expires before receiving a response. Thus multiple response mes-
sages for the same query may be received. We keep matching query-response pairs in the
wrapper for at least threshold seconds, and use them to cope with these multiple responses.

The map deletion operator, denoted by <; takes two operands. The first operand
is a set and the second one is a map. The operator gives a map that contains all elements
in the second operand whose domains do not belong to the first operand. Let now denote

the current time, and M sgMinusId(m) denote message m minus the query id field.
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Wrapper ,r1(m : Resp) p : Resp
ext wr : completed, transTable
pre : true
post : (g € Query -
/* When m is a response to a pending query generated by the protected server */
(id(q),Q(q)) € dom transTable A transTable(id(q), Q(q)) = id(m) A
Qm) = Q@) »
((id(q), Q(q))stransTable A completed = completed U (g, now,id(m)) A
id(p) = id(q) N MsgMinuslId(p) = MsgMinusId(m))) A
(3q € Query, ts € TimeStamp, i € QID -
/* When m is associated with a query that has been responded already */
Q(m) = Q(q) Nid(m) =i A(q, ts, i) € completed Ats > (now — threshold) =
id(p) = id(q) N MsgMinusId(p) = MsgMinusId(m)) A
(Aq € Query, ts € TimeStamp, i € QID -
((7d(q), Q(q)) € dom transTable A transTable(id(q),Q(q)) = id(m) A
Q(m) =Q(g) Vv
(Q(m) = Q(q) Nid(m) =i Al(q, ts, i) € completed Ats > (now — threshold)) =
p = null)

4.8.6 The Specification of Operation Wrapper,r2

If a response m passes Wrappersrl, the wrapper invokes Wrappersr2 to verify
the resource records of m. If all resource records in m agree with authoritative answers,
Wrappersr2 returns true and updates Viewegepe (w) with those resource records. Other-

wise, Wrappersr2 returns false.
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Wrapper ;r2(m : Resp) violation : Boolean
ext wr : Viewegene (W)
var : addset : DbMap /* rr in a message for a (domain name class, type) must not be

mixed with rr for the same (domain name, class, type) from another message */
violation = false;

addset = 0;

foreach rr € RRof(m) {
if not AuthVerified(rr,from,addset) then violation = true;

if (dname(rr),type(rr), class(rr)) € dom(addset) /* add rr to addset */

then addset(dname(rr),type(rr),class(rr)) =
addset(dname(rr),type(rr),class(rr)) U {rr};

else addset(dname(rr),type(rr),class(rr)) = {rr};

}

if not violation A not tc(m) /* must never store incomplete record sets */
then Viewcgene(w) = addset T Fresh(View,gene (w))

/* addset contains zone data from auth zones */
pre : m # null A Authoritative(rng View(w))

post : (Authoritative(RRof(m)) = violation = false V
not(Authoritative(RRof(m))) = violation = true) A
Authoritative(rng View(w))

4.8.7 The Specification of Operation AuthVerified

Wrapper ,r2 uses AuthVerified to verify a single resource record. Given a resource
record 77 sent by a process from, and a DbMap containing accepted resource records that
belong to the same response message as rr does, Auth Verified returns true if rr is known by
the wrapper to be authoritative, or rr agrees with an authoritative answer. Otherwise, Au-
th Verified returns false. There are three cases in which rr is known to be authoritative: (1)
from is known to be an authoritative server for rr; (2) from is known to be an authoritative
server for a zone and rr corresponds to delegation information for the server’s delegated
zones; (3) rr can be found in View(w). If none of the above three conditions is met,
the wrapper contacts an authoritative server for rr to verify rr against the authoritative

answer.
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Let |J denote the distributed union operator (i.e., |J forms the union of all sets
inside a set). The function ZtoD(z) returns the domain name corresponding to a zone z.

AuthVerified calls KnownAuthServer, NearestZoneKnown, and CheckAuthServer.
KnownAuthServer returns a set of authoritative name servers for a specified domain name.
Given a process p and a resource record, NearestZoneKnown returns the nearest zone with
respect to that resource record for which p knows an authoritative server (i.e., the author-
itative server data of that zone is in View(p)). CheckAuthServer contacts authoritative
servers with respect to a specified resource record and returns the authoritative answer.
For the sake of clarify, the specifications of KnownAuthServer and NearestZoneKnown are
shown in Appendix B. The specification of CheckAuthServer will be shown after that of
Auth Verified.

AuthVerified(rr : RR, from : Process, knownNS : DbMap) auth : Boolean
/* returns true if rr agrees with authoritative data from an authoritative server;

returns false otherwise. knownNS contains verified NS resource records in the same
response as rr does. */
ext wr : View(w)

var: ans: Server, q: Query
auth = false;

if ((from € KnownAuthServer(dname(rr),class(rr), Fresh(View(w)))) V

/* from is an auth server */
(3 z € Zone - from € KnownAuthServer(ZtoD(z), class(rr), Fresh(View(w)))

/* from gives info of delegated zones */
A ((dname(rr) € SubZone(z) A type(rr) = NS) v

(3 cz € Zone, nsr € J(rng knownNS) - cz € SubZone(z) A type(rr) =
A A dname(nsr) = cz A type(nsr) = NS A dname(rr) = rdata(nsr) A

dname(rr) € SubDomain(z)))) V /* dname(rr) is under z’s domain */

(rr € U(rng Fresh(View(w)))) /*rris known to be auth */
then auth = true

else
nz = NearestZoneKnown(w,rr);
/* find nearest zone that w knows its name servers */

auth = rr € Ans(CheckAuthServer(rr,ZtoD(nz),nz,1))
pre : Authoritative(rg View(w))

post : auth = Authoritative({rr}) A Authoritative(rng View(w))
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4.8.8 The Specification of Operation CheckAuthServer

When Auth Verified cannot verify a resource record rr using its local information,
Auth Verified invokes CheckAuthServer to query an authoritative server for rr to obtain an
authoritative answer and compares rr with the authoritative answer to check for consis-
tency. CheckAuthServer has two main steps. First, CheckAuthServer locates an authorita-
tive name server for rr by traversing the domain name space one zone at a time, starting
from a given zone nzone. After an authoritative servers for rr are located, CheckAuthServer
will query this server to obtain an authoritative answer with respect to rr.

Given a resource record rr, CheckAuthServer returns the authoritative answer
for (dname(rr),type(rr),class(rr)), if found; otherwise, CheckAuthServer returns null. To
prevent reference loops caused by misconfigurations or possible denial of service attacks,
we use a counter hop to record the amount of resources used by CheckAuthServer. If
the counter exceeds a certain threshold, HopThreshold, CheckAuthServer terminates and
returns null.

CheckAuthServer uses ConstructQy,, Gety, IsAuthDomain, and GETNS-A. Their
details are shown in Appendix B. Given a domain name, a resource type, and a resource
class, Construct@,, constructs a query with a randomized query id. Get,, sends a query
to a specified name server and returns the response, if any. Given a resource record rr
and a domain name d, IsAuthDomain returns true if d is the authoritative domain for
rr; otherwise, it returns false. The macro GETNS-A retrieves the NS resource records and
the A resource records for a specified domain. The specification of CheckAuthServer is as

follows:
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CheckAuthServer(rr : RR, nzone : Zone, curdom : DName, hop : Integer,rs : DbMap)
r : Reply

ext rd : View(w)

var : curr-ns : Server, ass: Server—set, q: Query, m : Reply, newcurdom : DName,
nrr, arr, temprr, temprr2 : RR, tempzone : Zone, temprs : RR—set,

nss : RR—set, newrs : DbMap
if hop > HopThreshold then return null

newrs = rs
m = null
ass = KnownAuthServer(ZtoD(nzone),class(rr),newrs 1 Fresh(View(w)))

if IsAuthDomain(rr,curdom) then /* curr-ns is an auth server for rr */
if (rng transTable) = QID then return null; /* unused query id available */

q = ConstructQq(dname(rr), type(rr), class(rr)); /* make query q for rr */
while m = null A ass # 0 do /* enumerate auth servers of zone nzone */
let curr-ns € ass in
m = Gety(q,curr-ns)
ass = ass - {curr-ns}

return m;
else /* find auth servers for rr */
newcurdom = ChildDomain(nzone,rr);

/* find the child domain of curdom that is closer to the auth zone for rr */
if (rng transTable) = QID then return null;
q = ConstructQqy(newcurdom, NS, class(rr)); /* find NS rr for newcurdom */
while m = null A ass # 0 do
let curr-ns € ass in
m = Gety(q,curr-ns)
ass = ass - {curr-ns}
if m = null then return null
if rcode(m) = NotExists then /* newcurdom not a zone */
return CheckAuthServer(rr,nzone,newcurdom, hop,newrs)

else GETNS-A /* get NS and A rr for newcurdom servers */
if KnownAuthServer(newcurdom,class(rr),newrs | Fresh(View(w))) # 0§

/* exists a server for newcurdom that we know the A rr */
then return CheckAuthServer (rr,newcurdom,newcurdom,hop+1,newrs)
else return null /* can’t locate server for newcurdom */
pre : Authoritative(rng View(w))
post : Authoritative(Ans(r))
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4.9 Experiments

4.9.1 Overview

We conducted experiments to evaluate the response time (i.e., the elapsed time
between sending a query to a name server and receiving a response from it) of a wrapped
name server, and to evaluate the false positive rate, the false negative rate, and the com-
putational overhead (i.e., CPU time used) of our wrapper.

Based on the DNS wrapper specification discussed in Section 4.8, we implemented
a prototype of the DNS wrapper for BIND release 4.9.5, which was the latest release for
BIND when we started our implementation. The DNS wrapper was written in C. We
modified the BIND name server source code to invoke the DNS wrapper upon receiving
queries and responses and upon sending queries to other name servers.

In this section, we describe three sets of experiments and their results. In Exper-
iment #1, we examined the response time and the false positive rate of our wrapper using
100 domain names that were distinct and remote (i.e., outside the cs.ucdavis.edu domain).
In Experiment #2, we examined the response time, the false positive rate, and the compu-
tational overhead of our wrapper using a trace of DNS queries received by a name server
in an operational setting. In Experiment #3, we examined the false negative rate of our
wrapper with respect to four attacks: three cache poisoning attacks and one masquerading

attack.

4.9.2 General Experimental Setup

In these experiments, our name servers listened to port 4000 instead of port 53
(the de facto standard port number for name servers) for DNS queries to prevent queries
outside our experiments from affecting our results.

In every run of our experiments, we started a fresh copy of our name server
because name servers maintain a cache for DNS information obtained through interacting
with other name servers. The behavior of a name server can be quite different depending
on whether the DNS information queried is in the cache. Restarting name servers can
avoid interference between consecutive runs of the experiment.

We used a modified version of nslookup as the DNS client in our experiments.

(See [1] for a good tutorial on nslookup.) We chose nslookup because it is a convenient
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tool for generating DNS queries and displaying DNS responses. Moreover, nslookup can
be easily configured to use a specified name server port number and to query a specified
name server. Our modified nslookup uses gethrtime() Unix system calls to record the time
when a query is sent and when the corresponding response is received. Unless otherwise
specified, we use nslookup to refer to this modified version of nslookup for the rest of this
chapter.

Our experiments were performed on a lightly loaded Sun SPARC-5 running Solaris
2.5.1. We ran our name servers and nslookup on the same machine (instead of running them
on separate machines) to eliminate the network latency for the communication between
nslookup and our name servers. Thus we reduced the influence of the local area network
load on the experimental results.

Because we did not have control over external name servers, and the inter-network
links between our name server and external name servers, we performed Experiments #1

and #2 multiple times and calculated the average response time.

4.9.3 Experiment #1

Experiment #1 was designed to evaluate the response time of a wrapped name
server and the false positive rate of our wrapper given a list of domain names that were

distinct and remote (i.e., outside our authoritative domain).

Data Set

The data set for Experiment #1 consisted of the domain names of a collection of
100 web sites. These web sites were selected by PC magazine online as the “Top 100 web
sites” in 1998 [49]. They were classified into 20 categories—for example, online auctions,
shopping, news, entertainment, search engines—covering different aspects of Internet usage.
(For the sake of completeness, the 100 domain names are listed in Appendix C.) We used
this list instead of a random list of domain names because the domain names in the selected
list generally corresponded to popular and useful web sites. Thus the selected list probably
provided us a more representative sample set of remote domain names than a random list
would have. This data set represents a worst-case scenario for the response time overhead
for the wrapper. In practice, the stream of queries received by a name server usually

contains some repetitions and “local” queries (i.e., queries for domain names for which
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the name server is authoritative). Both repetitions and local queries reduce the amount
of wrapper verification needed. (In Section 4.9.4, we discuss the performance of the DNS

wrapper in a “real life” setting.)

Experimental Procedure
1. Start a wrapped name server.

2. Run nslookup to query the wrapped name server for the IP addresses of the 100

domain names sequentially.
3. Terminate the wrapped name server.
4. Start an unmodified name server.

5. Run nslookup to query the unmodified name server for the IP addresses of the 100

domain names sequentially.

6. Terminate the unmodified name server.

Experimental Results

Table 4.2 shows the statistics related to response times for nslookup based on 48

Unmodified Name Server Wrapped Name Server
# queries | Mean | Min Max | Std Dev | Mean | Min Max | Std Dev
20 | 16.01 | 3.37 | 71.05 10.84 | 30.94 | 835 | 67.86 11.77

40 | 22.69 | 9.99 | 77.78 11.35 | 44.47 | 15.06 | 84.69 14.15

60 | 31.61 | 15.98 | 91.83 12.66 | 58.27 | 30.99 | 99.16 16.07

80 | 36.98 | 18.45 | 102.37 13.48 | 67.37 | 40.39 | 116.59 17.52

100 | 47.91 | 30.29 | 112.70 13.08 | 85.46 | 51.01 | 133.61 18.78

Table 4.2: Cumulative Response Time (in Sec.) for the “Top 100 Web Sites” Data Set.

runs of the experiment. A value in the “# queries” column refers to the cumulative number
of queries starting from the first query. For example, the “60” in that column indicates
that the corresponding row provides statistics for cumulative response times for the first 60
domain names in the list. The “Mean”, “Min”, “Max”, and “Std Dev” columns indicate

the average, the minimum, the maximum, and the standard deviation of the cumulative
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response times among the runs. The response times for the wrapped name server were
larger than the counterparts for the unmodified name server, and the differences represented
the overheads of the wrapper. For 100 queries, the mean response time for the wrapped
server was (0.8546 second per query, and that for the unmodified server was 0.4791 second
per query.

To find out the false positive rate of our wrapper, we examined the security
violation messages in the security log generated by the wrapper, and investigated the
validity of these violations (manually) by querying the relevant name servers. Among the
48 runs of the experiment, the average number of security violations that corresponded to
different domain names was 2.125.

We define two classes for the false positives generated by our wrapper. The first
class, called pseudo false positive (or PFP in short), corresponds to name server behaviors
that violate our name server specification or to a violation of our assumptions. For example,
false positives caused by misconfigurations of name servers are in PFP. An example of
misconfiguration is lame delegation. In order for domain delegation to work, the name
servers of a (parent) zone must know the name server information of its child zones—the
domain names of the child zone name servers and, if these domain names belong to the
parent domain, the IP addresses of these child zone name servers. In lame delegation, the
parent zone has incorrect information about the name servers of its child zones. Lame
delegation may be caused by an operational error in which a system administrator changes
the name server data of a zone but fails to have the corresponding data in the parent zone
updated.

To illustrate anomalies for class PFP, Figure 4.8 shows a security violation mes-
sage reported by our wrapper. In this example, our wrapper received a response for query-
ing the IP address of www.zone.com. Note that in the response (as shown in the upper
part of Figure 4.8) there are two “additional” records that contain the IP addresses of
dnsl.moswest.msn.net. and dns2.moswest.msn.net. The wrapper verified those IP addresses
with an authoritative server for those two domain names. From the response sent by the
authoritative server, shown in the lower part of Figure 4.8, the wrapper discovered that
they did not exist and thus generated a security log message.

A second example for class PFP is illustrated in Figure 4.9. It represents an
operational error that DNS data are associated with an alias rather than with the canonical

domain name. This is a violation of the DNS specification [43, 44] that forbids CNAME



seclog: type = 10, caller = CheckAuthServer2:

Unable to verify a rr.

;3 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 52426
;; flags: qr aa rd ra; Ques: 1, Ans: 6, Auth: 3, Addit: 2
;3 QUESTIONS:

HN www.zone.com, type = A, class = IN

;3 ANSWERS:

WWW.Zzone.com.
WWW.Zone.com.
WWW.Zzone.com.
WWW.Zone.com.
WWW.Zone.com.
WWW.zone.com.

207.46.172.41
207.46.172.42
207.46.172.43
207.46.172.44
207.46.172.45
207.46.172.46

= e

;3 AUTHORITY RECORDS:

zone.com. NS atbd.microsoft.com.
zZone.com. NS dnsl.moswest.msn.net.
zone.com. NS dns2.moswest.msn.net.

;3 ADDITIONAL RECORDS:
dnsl.moswest.msn.net. A 204.255.246.17
dns2.moswest.msn.net. A 204.255.246.18

seclog: type = 12, caller = CheckAuthServer2:
Supplementary Info.

;3 —>>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 19455
;; flags: gr aa ra; Ques: 1, Ans: O, Auth: 1, Addit: O

;3 QUESTIONS:

HE dnsl.moswest.msn.net, type = A, class = IN

;3 AUTHORITY RECORDS:

msn.net. S0A dns.cp.msft.net. msnhst.microsoft.com.

990318007 ; serial
21600 ; refresh (6 hours)
3600 ; retry (1 hour)
1728000 ; expire (20 days)
21600 ) ; minimum (6 hours)

Figure 4.8: A Security Log Message for www.zone.com.

(
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seclog: type = 10, caller = CheckAuthServer2:

Unable to verify a rr.

;3 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 64463
;; flags: gqr aa rd ra; Ques: 1, Ans: 1, Auth: 6, Addit: 5
;3 QUESTIONS:

;3 www.3com.com, type = A, class = IN

;3 ANSWERS:
WWw.3com.com. A 192.156.136.22

;3 AUTHORITY RECORDS:

3com. com. NS fourl1l.3com.com.
3com.com. NS tmc.edu.

3com. com. NS nsl.cs.odu.edu.
3com.com. NS news.aero.org.
3com.com. NS mail.aero.org.

3com. com. NS seaweed.thirdcoast.net.

;3 ADDITIONAL RECORDS:

fouril.3com.com. A 129.213.128.98
tmc.edu. A 128.249.1.1
nsl.cs.odu.edu. A 128.82.4.38
news.aero.org. A 130.221.16.4
seaweed.thirdcoast.net. A 207.38.56.10

seclog: type = 12, caller = CheckAuthServer2:
Supplementary Info.

;3 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 33450
;; flags: gr aa ra; Ques: 1, Ans: 2, Auth: 3, Addit: 1

;35 QUESTIONS:

;; nsl.cs.odu.edu, type = A, class = IN

;3 ANSWERS:

nsl.cs.odu.edu. CNAME nixon.cs.odu.edu.
nixon.cs.odu.edu. A 128.82.4.38
[snipped]

Figure 4.9: A Security Log Message for www.3com.com.
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data and another type of data for the same domain name to co-exist. In the experiment,
our wrapper received a response, as shown in the upper part of Figure 4.9, that included
an A resource record (i.e., the IP address) for nsl.cs.odu.edu. The wrapper verified it with
the authoritative server for nsl.cs.odu.edu. and discovered that this domain name did not
have an A resource record (c.f. the lower part of Figure 4.9).

The second class for the false positives, called genuine false positive (or GFP in
short), is for warnings generated by the DNS wrapper that do not correspond to violations
of our specification or of our assumptions. For the class GFP, all but one of the security
log messages generated by the wrapper in Experiment #1 were due to the number of DNS
queries sent in the wrapper verification exceeding a threshold. The threshold was used to
ensure that the amount of resource used for verifying a resource record was bounded, thus
protecting the wrapper from problems like circular references and denial of service attacks.
If we ignore false positive messages belonging to the class PFP, the average number of

security violations that correspond to different domain names is 0.375 per run.

4.9.4 Experiment #2

In Experiment #2, we used a trace of DNS queries received by a name server in
an operational environment. Experiment #2 was designed to evaluate the response time
of a wrapped name server, the false positive rate of the wrapper, and the computational
overhead (i.e., CPU time used) of the wrapper in a practical setting. The results for
Experiment #2 show that in practice the average query response time would not be as

large as that indicated in Experiment #1 because of local queries and query repetitions.

Data Set

The data set for Experiment #2 consisted of a trace of 1340 DNS queries received
by a name server in a “real world” setting. To gather the trace of DNS queries, we modified
a name server to log all DNS queries it received and ran it for two days. We also modified the
local BIND resolver configuration file to use this name server. In the resolver configuration
file, the search list was consisted of cs.ucdavis.edu., ucdavis.edu., and ucop.edu. When a
BIND resolver is invoked to resolve a relative domain name—a domain name that does not
have a trailing dot—it appends the domain names in the order specified in the search list

and attempt to resolve them until a positive response is received. If none of them results
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in a successful resolution, the resolver then generates a query for the relative domain name
itself. For example, when the BIND resolver is invoked for domain name hostl, it attempts
to resolve for hostl.cs.ucdavis.edu., hostl.ucdavis.edu., hostl.ucop.edu., and hostl in that

order until a successful resolution is obtained.

Experimental Procedure

The experimental procedure for Experiment #2 was similar to that of Experi-
ment #1 with the following three exceptions. First, we used the trace of 1340 DNS queries
we collected over a two-day period rather than the list of domain names corresponding to
the 100 web sites. Second, we made our name server an authoritative name server for the
domain cs.ucdavis.edu. to take advantage of the domain name locality of the DNS queries.
Third, after a name server finished resolving the trace of queries, we recorded the total

system CPU times and the total user CPU times used.

Experimental Results

Table 4.3 shows the statistics related to response times recorded by nslookup based

on 33 runs of this experiment. The mean response time for the wrapped server was 0.12

Unmodified Name Server Wrapped Name Server
# queries | Mean | Min Max | Std Dev | Mean Min Max | Std Dev
200 6.24 | 3.75 | 19.78 3.62 8.83 4.27 | 24.52 4.66
400 | 11.63 | 7.44 | 23.99 4.06 | 19.56 | 10.48 | 34.53 6.37

600 | 45.59 | 22.29 | 147.99 28.31 | 73.42 | 40.66 | 270.41 45.65
800 | 59.71 | 35.60 | 171.83 28.99 | 94.66 | 58.53 | 312.98 49.46
1000 | 74.15 | 40.28 | 263.69 50.93 | 111.69 | 70.72 | 332.60 62.77
1200 | 96.71 | 55.36 | 370.10 75.22 | 145.10 | 85.13 | 396.51 87.50
1340 | 111.05 | 70.52 | 392.48 78.75 | 165.96 | 102.38 | 439.51 91.96

Table 4.3: Cumulative Response Time (in Sec.) for the “Two-day trace” Data Set.

second per query, and that for the unmodified server was 0.08 second per query. Both
values are smaller than their counterparts in Experiment #1. We examined the trace
segments that correspond to “steep” rises of the graphs marked “wrapper (mean)” and

“unmodified (mean)” (e.g., 400t*-600"" query and 1000%"-1340"" query), we found that they
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could be explained by DNS queries generated by web surfing sessions, which were mostly
remote and distinct. Specifically, the trace segment for the 400"*-600*" query included 43
remote and distinct domain names. The average total response times for those 43 queries
for the unmodified server and the wrapped server were 28.29 seconds and 47.54 seconds
respectively, which accounted for 83% and 88% of the total response times for that interval
respectively.

Table 4.4 shows the CPU times used by the unmodified server and the wrapped

server. The figures show that the average CPU times used are a small fraction (8% for

Unmodified Name Server Wrapped Name Server
Type | Mean | Min | Max | Std Dev | Mean | Min | Max | Std Dev
System | 4.01 | 3.43 | 4.90 0.36 | 5.32 | 4.59 | 5.82 0.33
User | 4.35 | 3.73 | 4.90 0.26 | 6.94 | 6.31 | 7.90 0.43

Table 4.4: System and User Times Used (in Sec.) for the “Two-day Trace” Data Set.

the unmodified server and 7% for the wrapped server) of the total response time. Thus
the increase in response time reported in Table 4.3 was largely due to waiting for response
messages sent by remote servers used in the wrapper verification process. The average
total CPU time increased from 9.33 seconds to 11.29 seconds (i.e., a 21% increase).

For the two-day trace data set, false positives ranged from 2-10 per run, with the
mean being 5.85 and the standard deviation being 1.89. If we only consider false positives
in the class GPF, false positives ranged from 0-3 per run, with the mean being 1.18 and
the standard deviation being 0.88. Among those false positives in the class GPF, 90% of
them were of the “messages sent exceeding the threshold” type, as explained earlier, and

the remaining 10% of them were due to timeout during the wrapper verification process.

4.9.5 Experiment #3

The main goal of Experiment #3 is to examine the detection rate of malicious
attacks of a wrapped name server (i.e., false negative rate). We investigated the following

four types of attacks:

e Sending incorrect resource records for a remote domain name to the victim: This is

accomplished by using a CNAME resource record in the answer section of a response
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message to introduce an arbitrary domain name for which the victim server is not
authoritative, and then including incorrect resource records for this remote domain

name in the response message. Figure 4.7 shows an example of this type of attacks.

e Sending incorrect resource records that conflict with the zone data for which the victim
is authoritative: In particular, the attacker uses a CNAME resource record to link to

an A resource record for which the victim is authoritative.

e Sending resource records that correspond to a non-existing domain name that lives in
the zone for which the victim is authoritative: In other words, the authoritative zone

does not have this domain name.

o Sending a response with a query ID that does not match the query ID in the corre-
sponding query sent by the victim: A variant of this attack is to use a query to trigger
the victim name server to send a query to the attacker whom records the query ID
used. A second query is then issued to trigger the victim to query the attacker again.
Instead of using the query ID used by the victim, the attacker adds one to the query

ID used in the first query and uses the result as the query ID in its second response.

The first three types of attacks correspond to sending incorrect DNS data to a name server.
These are also called cache-poisoning attacks. The fourth type of attacks corresponds to
masquerading attacks. Our wrapper used randomized query ID’s for outgoing queries.
Thus attackers who do not have access to those queries will have to guess the query ID’s
used for their forged response messages. As a result, their forged messages will be detected

with high probability.

Data Set

In Experiment #3, we modified the data set used in Experiment #2 by inserting
two queries that correspond to each of the four types of attacks at random locations in the
two-day trace. Moreover, we also inserted four “ordinary” queries at random locations in
the trace as controls. These queries correspond to different domain names in the domain
for which a malicious name server is authoritative but do not trigger an attack by the

malicious name server.
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Experimental Procedure

1.

Start a malicious name server for a new sub-domain dns.cs.ucdavis.edu. When that
malicious name server is asked to resolve for certain domain names that reside in the
dns.cs.ucdavis.edu. domain, depending on the domain names queried, it will either
return incorrect DNS resource records or send out response messages with an incorrect

query ID or a predicted query ID.

. Start a wrapped name server.

. Run nslookup with the modified trace of DNS queries as input and send the queries

sequentially to the wrapped name server.

. Terminate the wrapped name server.
. Restart the malicious name server.
. Start an unmodified name server.

. Run nslookup with the modified trace of DNS queries as input and send the queries

sequentially to the unmodified name server.

. Terminate the unmodified name server.

. Terminate the malicious name server.

Experimental Results

We ran the experiment five times. In all five runs, all eight attacks (i.e., two from

each of the four attack types) were reported correctly by the wrapped name server, and

none of the response messages corresponding to the control queries were mis-classified as

attacks.

When we applied these four types of attacks to an unmodified name server, the

first type of attacks succeeded in planting incorrect DNS data into the cache of the victim

server. For the second and the third type, the unmodified name server did not cache the

incorrect DNS data for domain names that belong to its authoritative domain. However,

the name server did forward the entire response message received, including those incorrect

resource records for which the name server was authoritative, to its client. That did not
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make much difference for our experiments because the client used was nslookup, which
did not perform caching. However, if the client was another name server that was not
authoritative for those incorrect DNS data, the cache of the client would be corrupted.
This situation may occur when the client is a caching-only server3' that uses another name
server as a forwarder>®. The “two-query” variant of the fourth type of attacks succeeded
for an unmodified name server. It was because the query ID used by an unmodified name

server was predictable: the query ID used in successive queries always differed by one.

4.10 Discussion

In our experiments, no false negatives for our wrapper were observed. Specifically,
we carried out cache poisoning attacks and a version of spoofing attacks (i.e., query id
guessing attacks), and they were all detected by our wrapper. The wrapper prevented the
corresponding DNS messages from reaching the protected name server and recorded these
messages in its log. On the other hand, those attacks were successful against BIND release
4.9.5. We note that our wrapper would be ineffective if our assumptions were violated. In
particular, if an attacker can eavesdrop the query messages sent by our wrapper (hence
the randomized query id used), our wrapper may not be effective against spoofing attacks.
A strong cryptographic authentication scheme for DNS (e.g., DNSSEC) appears to be
necessary to cope these attacks.

For Experiment #2 (i.e., using the two-day trace that contained 1340 queries),
there were 5.85 false positives on average. Among these false positives detected by our
wrapper, about 80% were caused by misconfigurations of external name servers (e.g., parent
and child zones contain inconsistent name server information about the child zone) and
the rest were caused by the inability of our wrapper to verify a response message (e.g.,
timeouts during the wrapper verification process). In other words, the majority of these
false positives are in the class PFP (as defined in Section 4.9). In many cases, false positives
in PFP and malicious attacks are virtually indistinguishable without performing an “out
of band” investigation. Thus it is not clear how we can significantly reduce the number of

false positives.

31 A caching-only server is a name server that is not authoritative for any domain.

32 A forwarder is a name server to which other name servers forward their recursive queries. A forwarder
is useful for building a large cache for remote DNS data, especially when communication between local
machines and remote machines is slow or restricted.
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There is a moderate increase in response time when the wrapper is used. Specif-
ically, for Experiment #1 (which involves 100 remote and distinct domain names) the
mean response time per query increased from 0.4791 second to 0.8546 second. For Exper-
iment #2, the mean response time per query increased from 0.08 second to 0.12 second.
The percentage increases in the response time seem to be moderately large; however, the
impact on the users is insignificant because of the small absolute values. As for CPU
overhead, we observed a 20% increase in CPU load due to the wrapper in Experiment #2.
Because name servers are usually not CPU-bound, the wrapper should be applicable in

most environments.

4.11 Summary and Future Work

In this chapter, we examined security vulnerabilities of DNS, evaluated existing
approaches for protecting DNS, presented a detection-response approach for protecting
DNS, developed formal specifications for DNS clients, DNS servers, and our DNS wrapper,
and performed experiments to evaluate the performance for our wrapper prototype: the
number of false negatives, the number of false positives, the changes in response time, and
the computational overhead associated with deploying the DNS wrapper.

Our approach consists of the following steps. First, we define our security goal—
name servers only use DNS data that are consistent with the corresponding authoritative
data. Second, we develop a DNS model and write formal specifications for DNS clients and
DNS servers. Third, we design our DNS wrapper with the objective that the composition
of the specification for a protected name server and that for the wrapper satisfy our security
goal for DNS. If the DNS wrapper receives a DNS message that may cause violations of our
security goal, the wrapper drops the message instead of forwarding it to the protected name
server. Fourth, we use the formal specification for our wrapper to guide our implementation
of a wrapper prototype.

Compared to the prior work for protecting DNS, our DNS wrapper has the fol-

lowing advantages:
e Provides assurance by employing formal methods.

e Effective against cache poisoning attacks and certain spoofing attacks (i.e., query id

guessing).



106

Compatible with existing DNS implementations.

Does not require changes for the DNS protocol.

Incurs reasonable performance overhead.

Can be deployed locally; does not depend on changes to other remote DNS compo-

nents.

In November 1998, a company called Men & Mice surveyed the status of domain
name services on the Internet [42]. Among 4184 randomly picked com zones, they found
that 1344 of them (i.e., 32.1%) were vulnerable to cache poisoning attacks. In other words,
the name servers for those zones could be compromised and gave out incorrect information
about other domains, including its delegated domains. We note that the effectiveness of
our DNS wrapper is not affected by attacks against external name servers as long as our
assumptions are met.

There are several directions for future research.

e To further raise the assurance level of our wrapper, we may perform a complete
formal verification from specification to implementation. The VDM specifications

developed in this chapter could be the basis for conducting the formal verification.

e Results from Experiment #2 show a 0.437% false positive rate for the DNS wrapper.
Because the majority of these false positives are caused by misconfigurations of ex-
ternal name servers, a non-trivial modification for the DNS wrapper may be needed

to significantly reduce the false positive rate.

e We have not discussed protecting DNS resolvers. If the communication link between
a resolver and its trusted local name server is secure, and the name server is pro-
tected by our DNS wrapper, the DNS data received by the resolver is “safe” because
a wrapped name server only uses DNS data that are consistent with the correspond-
ing authoritative answers. Future research may be conducted for protecting DNS
resolvers when the resolver-server communication link is insecure. A possibility is to

adapt our DNS wrapper to protect resolvers.

e We may apply our approach to protect other network services and privileged pro-

CEesses.
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Chapter 5

Conclusions and Future Work

“Goodbye Jean-Luc, I'm gonna miss you. You had such potential. But then
again, all good things must come to an end.”

—Q (Star Trek: The Next Generation)

5.1 Conclusions

This section summarizes the results and the contributions of this dissertation.
Section 5.1.1 presents our intrusion tolerance approach. Our approach, a significant ex-
tension of intrusion detection, includes detection of violations of security policies, system
diagnosis to identify misbehaving components, and automated response to prevent an at-
tack from propagating and to restore the operational status of the system. Formalism is
an integral part of our approach. To raise the assurance level of detection-based solutions,
our approach includes modeling of system components, characterizing system components
using formal specifications, and proving properties of the solutions. We have applied our
intrusion tolerance approach to three sub-problems in securing a network infrastructure:
Section 5.1.2 summarizes our efficient message authentication scheme for link state routing.
Section 5.1.3 summarizes our work in detecting and responding to routers that maliciously
drop packets and misroute packets. Section 5.1.4 summarizes our wrapper-based solution

for protecting domain name systems.
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5.1.1 Intrusion Tolerance: A New Approach

This dissertation presented an intrusion tolerance approach for protecting network
infrastructures. Our approach, which extends prior work on intrusion detection and fault

tolerance, includes the following:

e Cooperation among network components to detect attacks that are beyond the ca-
pability of any single component (e.g., in the flow analysis protocol, routers that
are neighbors of a tested router cooperate to detect whether the tested router drop

packets).

e System diagnosis to identify misbehaving network components (e.g., in the Opti-
mistic Link State Verification scheme, routers exchange information and trace the

propagation of forged routing updates to identify misbehaving routers).

¢ Automated response to prevent misbehaving components from affecting other com-
ponents (e.g., a DNS wrapper that drops messages that may compromise a name
server) or to restore the operational status of a system by system reconfiguration

(e.g., a routing protocol that logically disconnects misbehaving routers).

In current practice, when potential attacks are detected, intrusion detection sys-
tems will send a warning to a security administrator, who will be responsible for inves-
tigating and resolving the problems. We envision that human intervention at this level
will not be feasible for much longer because of an increasing number of attacks, increasing
use of automated attacks (hence potentially rapid propagation of attacks), and increasing
costs attendant to slow human response. For instance, having a network (infrastructure)
unavailable—even for a short time—will incur high costs as more and more users rely on
computer networks to perform time critical activities. Our approach includes, in addition
to detection, system diagnosis to identify misbehaving network components and automated
response such as system reconfiguration to avoid using components that are diagnosed as
misbehaving.

Our approach is novel (among intrusion detection work) in using system diag-
nosis to identify misbehaving components and reconfiguration for system recovery. Our

detection-diagnosis-reconfiguration approach is useful when one of the following items hold:

e Prevention measures are too expensive or too restrictive to use: Implementing secu-

rity measures to prevent attacks could be expensive. By using a detection-recovery
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approach, we may only need to invoke expensive measures when the system is under
attack. We note that this approach may not be applicable in some circumstances.
For example, when there is leakage of confidential information, the damage may be
irrecoverable. Chapter 2 illustrated when detection-based solutions may be used as
an alternative to prevention, namely in the context of efficient message authentication

for link state routing.

o Retrofitting is used to improve the security of existing systems: To live with existing
network protocols and legacy systems, changes to them should be kept at a minimum
when we improve their security. Chapter 3 illustrated how our approach can be used
in existing link state routing protocols to detect and to respond to routers that

incorrectly drop or misroute transit packets.

Applying our approach to protect network infrastructures should result in so-
lutions that are more attack resistant (or survivable) than existing intrusion detection
approaches. Through the use of cooperative detection, decentralized diagnosis, and au-
tonomous response, our solutions are less susceptible to a single point of failure and more
capable of achieving faster response. For example, if a router is compromised, it may
masquerade as a trusted router and send out erroneous routing control messages. In our
solutions, after cooperatively detecting an attack and performing diagnosis to identify
misbehaving routers, the neighbors of a compromised router respond by terminating the
neighbor relationships with the offensive router, thus logically disconnecting it from the
network. As a result, the damage caused by the attack would be confined to those ma-
chines that are directly connected to that compromised router. The rest of the network can
still function, although perhaps at a degraded level. On the other hand, existing intrusion
detection systems often assume that their components themselves are reliable. For exam-
ple, centralized security managers are used in most existing intrusion detection systems
to aggregate and to analyze data sent by individual data sources. If a data source or a
centralized security manager is compromised, an attacker could hide the attack by having
that compromised component submit erroneous reports.

Formalism is an integral part of our approach, which includes modeling of system
components, capturing the functionality of system components by formal specifications,
and proving properties of our solutions. Previously, formal methods have not been used in

connection with intrusion detection. A common concern for intrusion detection systems is
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that it is difficult to assess the benefits of deploying those systems. Currently, a testing-
based methodology (e.g., [54, 55]) is used to evaluate an intrusion detection system, namely
by subjecting it to test data that contain attacks and to test data that are normal/attack-
free. Results like the detection rate for real attacks and the false alarm rate are used to
assess the effectiveness of an intrusion detection system. The usefulness of the testing-based
methodology depends on the coverage of the test data and the sensitivity of the test results
with respect to changes in the operating environments. However, it is hard to obtain test
data from a real environment that are known to be free of attacks (for control purposes) and
test data that contain attacks representing most attack categories (for coverage). Attacks
experienced by a system quite often change with time as variations of known attacks surface
or new attacks emerge. Thus it is difficult to develop a set of test data that is comprehensive
and that has strong prediction power with respect to changes in the operating environments.
At the policy enforcement level, it is often difficult, if not impossible, to construct the set of
enforced security policies given a set of attack signatures (as in misuse detection) or low level
system call traces (as in specification-based intrusion detection [31, 32, 61]). Moreover, it
is difficult to determine if an existing security policy is enforced based on attack signatures
and low level system call traces. The testing-based methodology is a very useful means
to evaluate intrusion detection systems. However, a more formal methodology is needed
to complement the testing-based methodology to facilitate reasoning with respect to high
level security policies and thus to raise the assurance level of detection-based solutions.

Our work is an initial step towards such a formal methodology.

5.1.2 On Efficient Message Authentication for Link State Routing

Securing a routing infrastructure necessitates assuring the authenticity of routing
control messages communicated among routers. Routers construct their routing tables
based on those control messages (which describe the current states of the corresponding
routers) to cooperatively forward packets from their sources to their destinations. If forged
control messages are used by routers, the routing infrastructure might be configured so it
is unable to perform its function correctly and efficiently. For example, erroneous control
messages might configure routers so that packets will take longer to or never reach their
destinations. As pointed out in [47] and in Section 2.2, existing message authentication

schemes are either too expensive computationally or too restrictive to be used for protecting
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routing control messages in link state routing.

We presented a novel detection-based message authentication scheme for link
state routing. Our scheme is efficient and does not have those restrictions. Our scheme is
based on an observation that most of the time routing infrastructures are not compromised.
Instead of expending considerable computational resource in securing routing control pack-
ets on a continuous basis, our detection-based message authentication scheme incurs little
resource cost during normal operations, but does use more resources when routing infras-
tructures are under attack. Our scheme is up to two orders of magnitude faster than an
MD5/RSA digital signature scheme during normal operations—by far the more common
situation. The technique used in our message authentication scheme may be applicable to
applications that need lightweight secure multicasting (c.f. Section 5.2.1). For example,
content providers can use our techniques in the secure multicast of news articles, stock

quotes, and advertisements.

5.1.3 On Protecting Routing Infrastructures from Denial of Service

Even though end users can employ encryption and message authentication to
protect the privacy and the integrity of messages sent over an insecure network, no prior
research has been conducted to protect these messages from denial of service attacks at
the routing infrastructure level. Denial of service can be caused by misbehaving—faulty,
misconfigured, or compromised—routers that misroute or drop packets.

To fill this gap, we developed failure models for routers according to the types of
packet information that might be used to select potential victim packets (e.g., packets with
certain source addresses are mishandled) and to the amount of packets that are mishan-
dled (e.g., ten percent of the packets destined for foo.edu are mishandled). Based on these
failure models, we developed techniques and protocols to detect, identify, and respond to
misbehaving routers. Our protocols are distributed and do not assume a centralized man-
ager that collects and analyzes the test results. We formally proved important properties of
our protocols under a set of assumptions. Specifically, our protocols are sound (i.e., a good
router never incorrectly claims another router as misbehaving), complete (i.e., if there are
misbehaving routers in a network, one or more of them can be identified), and responsive
(i.e., all routers that misbehave infinitely often will eventually be removed).

In the field of intrusion detection, we tend to assume the worst case scenarios
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(e.g., attackers have complete control over a compromised system). While solutions that
are based on the “omniscient” and “omnipotent” attacker assumption are more secure than
those that based on a more restricted assumption, the worst case assumption usually leads
to a solution that is significantly more complicated to design and to analyze, more restrictive
to use, and more expensive to deploy. Our study of different failure models is inspired by
the use of fault models of different “strength” in fault tolerance work. It may be prudent
to study different characteristics (or strengths) of failure modes in security because some
failure modes may be more difficult for an attacker to achieve than others. For example, use
of a proprietary operating system for a router may make attacks that require modifications
of router software more difficult than those that require modifications of routing tables. In
Chapter 3, we presented two techniques to cope with failure models of different strengths,
namely distributed probing and flow analysis. Flow analysis assumes a more malicious
failure model (i.e., intermittent and content-aware failure) than distributed probing does.
However, the flow analysis technique is more expensive to use than the distributed probing
technique because of the need to monitor every transit packet for every router. Moreover,
our protocol that is based on the flow analysis technique is also more complicated than

those based on the distributed probing technique.

5.1.4 On Protecting Domain Name Systems

In addition to securing routing infrastructures, this dissertation also presented a
detection-response approach for protecting another core component of network infrastruc-
tures, namely domain name systems (DNS). Unlike some prior work that requires changes
in remote name servers or extensions for the DNS protocol, our solution can be deployed
independently with individual name servers and does not require any changes in the DNS
protocol.

Our approach is driven by formal specifications. We developed functional specifi-
cations (in VDM) for DNS clients and DNS servers. Basically, DNS components are mod-
eled as an object that maintains a mapping for DNS data. The mapping may be changed
only through communicating with other DNS components (i.e., sending DNS requests and
receiving DNS responses) or by timeouts for DNS data. We specified our security goal for
DNS: Name servers only use DNS data that are consistent with those originating in the

corresponding authoritative name servers. Then we characterized a DNS wrapper, which
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enforces this security goal, using formal specifications. Our DNS wrapper filters out DNS
messages that may cause violations of our security goal instead of forwarding them to a
protected name server. Based on the DNS wrapper specification, we implemented a DNS
wrapper prototype and evaluated its performance.

From our experiments, we found that the increase in response time and the CPU
overhead due to the wrapper were reasonable. For example, in the second set of exper-
iments, the average per query response time increased from 0.08 second to 0.12 second,
and the average per run CPU time increased from 9.33 seconds to 11.29 seconds. In one of
our experiments, we found that the average false positive rate was 0.437%. About 80% of
these false positives were caused by misconfigurations of external name servers. Qur DNS
wrapper is effective against cache poisoning attacks and certain spoofing attacks. This was
confirmed by our experimental results that showed a zero false negative rate with respect
to our test data.

To sum up, this dissertation makes four main contributions. First, we presented an
intrusion tolerance approach for protecting network infrastructures. Second, we presented
an efficient detection-based message authentication scheme for link state routing. Third,
we presented techniques and protocols for detecting, identifying, and responding to routers
that misroute packets and drop packets incorrectly. Fourth, we presented a wrapper-based

solution for protecting domain name systems.

5.2 Future Work

5.2.1 On Optimistic Link State Verification

The optimistic link state verification (OLSV) scheme introduced in Chapter 2
is based on the observation that network infrastructures operate normally much more
often than under attack. Thus one can afford to employ more expensive diagnosis and
reconfiguration procedures to recover from an attack as they are used infrequently. To
understand the operating limit of OLSV, we may perform simulations for running OLSV
or evaluate OLSV analytically using a more detailed mathematical model that includes,
among other things, the frequency of successful router attacks and the frequency of link
state changes.

Even though OLSV does not require € (the maximum clock skew between any
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two good routers) to be smaller than a certain threshold, we note that there is a tradeoff
between the tightness of clock synchronization and the time to recover: The elapsed time
between releasing a signed link state update (LSU) and releasing the corresponding hash-
chained key (HCK) is greater than 2e¢ time units. Thus the larger the €, the longer routers
take to detect a forged LSU. A direction for future research is to reduce the time to recover
for OLSV when routers are loosely synchronized. If we cannot use a secure network time
protocol to reduce clock skew among routers, a plausible solution is to extend OLSV in
the following way: Because LSUs are broadcasted to every router, a router can detect a
forged LSU that claim to originate from itself. In such a case, the router can sign the
corresponding hash-chained key using its public key and broadcast the signed key to other
routers to initiate the recovery procedure sooner.

We may apply our efficient message authentication techniques to some lightweight
secure multicast applications. For example, a content provider may need to push news
articles and stock quotes to many subscribers. Using conventional digital signatures to
sign and to verify the integrity of all those messages may be too costly, especially on the
subscriber side because a subscriber may not have a fast machine and other applications
may be running on that machine when the message verification is being performed. Also,
using a symmetric-key based message authentication scheme may be inefficient because the
content provider needs to sign and to send a dedicated message to each subscriber. Our
techniques enable an efficient solution for this problem. Specifically, a subscriber machine
may first synchronize its clock with the content provider’s clock or engage in a protocol
to find out the clock skew between them. We assume that the public key of the content
provider is signed by some certificate authorities trusted by the potential subscribers. The
content provider generates a hash chain, constructs and signs a key-chain anchor (KCA)
message using its private key, and distributes the signed KCA to its subscribers. Then the
content provider can use the HCKs to generate the message authentication codes for its
multicasted messages. If a user subscribes to the channel after some HCKs are used, the
content provider may sign the most recently disclosed hash-chained key using its private
key and send the signed key, which serves a similar function as a signed KCA does, to
the subscriber. If the clock of the content provider and those of the subscribers are tightly
synchronized, or the subscribers can tolerate a certain time delay between the dissemination
and the use of a message, one may design a message authentication scheme that does not

use “optimistic verification”: After the subscriber machine receives a message signed by
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an HCK, it will wait until the HCK arrives. After the HCK and the message are verified,

the machine will deliver the message to the subscriber.

5.2.2 On Protecting Routing Infrastructures from Denial of Service

In Chapter 3, we made a simplifying assumption that a good router does not
drop packets. However, when network congestion occurs, routers may be forced to drop
packets. We propose to handle this by incorporating a threshold on the amount of transit
traffic a good router can drop to our protocols. We note that using a threshold scheme
is not perfect. For example, if a bad router only drops few packets, a threshold scheme
may miss the attack. On the other hand, it is probably useful for coping with large scale
denial of service attacks. For distributed probing, one can set a threshold so that a router is
diagnosed as good if it passes a certain percentage of tests. For flow analysis, one can adapt
our conservation of transit traffic test so that a router is diagnosed as bad if the difference
between its incoming and its outgoing transit traffic is larger than a certain threshold.
Setting the threshold depends on many factors such as network load and traffic patterns,
network topology, and the capacities of routers and communication links. Determining the
value of a proper threshold is a future research issue.

Another research direction one may pursue is to expand the scope of our work (in
Chapter 3) to include other failure models. Suppose a misbehaving router may modify the
payload of transit packets. Our distributed probing protocols can be adapted to cope with
packet payload modification attacks by checking the integrity of test packets after their
return to the tester. Our flow analysis protocol can cope with packet payload modification
if there is a change in packet length. However, extending our flow analysis protocol to
efficiently cope with attacks like flipping random bits in transit packets appears to be
difficult. Computing message authentication codes! (MAC) for transit packets seems to be
useful to detect bit flipping attacks. However, the overheads for generating, transmitting,
and verifying these MAC for every transit packet are quite high. And finding a means
to combine the MAC for successive transit packets to reduce the overheads is a challenge.
This is because a router may need to intermix transit packets sent by different neighboring
routers and a router may reorder or drop packets occasionally. It may be worthwhile to

revisit the distributed probing technique for coping with more malicious failure models.

!The argument here holds for using cryptographic checksums (e.g., digital signatures) in general.



116

5.2.3 On Protecting Domain Name Systems

In Chapter 4, we used VDM to specify DNS clients, DNS name servers, and our
DNS wrapper. To further raise the assurance level of our solutions, one may perform a
complete formal verification to ensure the transformations from specification to implemen-
tation was done correctly. VDM not only is well-suited for formal specification, but also
includes a proof theory that can be used to conduct rigorous inference from specification
to code concerning the properties of a specified system.

Another direction to pursue is to reduce the false positive rate for the DNS wrap-
per. The average number of false positives for the second set of experiments (which used
a two-day trace for one user with 1340 queries) was 5.85. Even though the false positive
rate does not appear to be very high, it might be a problem for a security administrator
who manages a large site. Our experimental results indicated that about 20% of the false
positives were caused by timeouts and a threshold we imposed to prevent the DNS wrapper
from spending too much resources on verifying one packet. One may try to fine tune these
parameters to reduce the false positive rate. A more challenging problem is to cope with
the remaining 80% of the false positives that were caused by misconfigurations of external
name servers. Some of them may be virtually indistinguishable from an attack. A possible
approach is to build a rule base that describes the common categories of misconfigurations
and to change the DNS wrapper to remove the offending resource records quietly (instead

of generating a warning) when DNS messages in those categories are received.
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BIND 4.9.5 Resource Record

Filtering Algorithm

We extracted the following resource record filtering algorithm

from ns_resp.c of BIND release 4.9.5.

Notation:
name(r) —--- name associated with resource record r
type(r) --- type associated with resource record r
rdata(r) --- data associated with resource record r

For example:
If resource record r is "hl.cs.ucdavis.edu CNAME
Then name(r) = hl.cs.ucdavis.edu
type(r) = CNAME
rdata(r) = h2.cs.ucdavis.edu

Algorithm:
cname = lastwascname = 0
aname = query name in the question section
for each resource record r in the answer section
if name(r) != aname
drop r
next resource record

h2.cs.ucdavis.edu"

if type(r)==CNAME and CNAME type is not what we want

aname = rdata(r)
lastwascname = cname = 1
else
lastwascname = 0
if r has the auth answer flag set and
name(r) == name in the question section
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r is an authoritative answer
else
r is an answer

for each resource record r in the authority section
if lastwascname
drop r
goto end
if type(r)==NS
if (aname does not belong to the domain denoted by name(r)) OR
(cname==0 AND name(r) does not belong to the domain of the
responding server)
drop r
next resource record
if the query is for system "priming" (i.e., initialize the cache with
a list of root server addresses)
r is an answer
else
r is an additional resource record.

for each resource record r in the additional section
if the query is for system "priming"
r is an answer
else
r is an additional resource record.

end:
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Appendix B

Additional Specifications for Our
Wrapper

This appendix contains specifications for our DNS wrapper that are not detailed

in Chapter 4.
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KnownAuthServer(d : DName, c: Class, m : DbMap) ss: Server — set
/* Returns a set of authoritative name servers (ss) for domain d and class ¢ with
both the NS and the A resource records in m */
/* Used by AuthVerified */

post : ss = {s | Jarr, nsrr € Jrng m -
dname(nsrr) = d A dname(arr) = rdata(nsrr) A dname(arr) = Sname(s)A
type(nsrr) = NS A type(arr) = A A class(nsrr) = class(arr) = c}

/* Sname(s) gives the domain name corr. to server s */

MatchCount(a : DName, b: DName) count : Integer
/* Used by NearestZoneKnown */

post : if suffiz(a,b) /% if ais a suffix of b */
then count = length(a); /* num of labels in a * /

else count = 0;

NearestZoneKnown(p : Process, rr: RR) nz : Zone
/* For a resource record rr, return the nearest zone of which
we know an auth name server */
/* Used by AuthVerified */

post : let zs = {z | 3rry,rre € View(p) -
(dname(rry), type(rri), class(rri)) = (2,NS, class(rr))A
(dname(rre), type(rre), class(rra)) = (rdata(rry), A, class(rr))} in
nz € {z € zs | V21 € zs - MatchCount(z,dname(rr)) >
MatchCount(z1, dname(rr))}



128

ConstructQq(d : DName, t : RRType, c¢: RRClass) q : Query
/* returns query q with the input parameters that has a random query id and the

rd bit unset to request iterative resolution */
/* Used by CheckAuthServer */

pre : (rng transTable) # QID /* unused query id available */
post : Q(q) = (d,t,c) Ard(q) = false Aid(q) = randomId({i | i € rng transTable})

Gety(q : Query, to: Server) m : Resp
/* sends query ¢ to server to. returns null when there is no response (i.e., timeout);

otherwise, returns the response that corresponds to the query ¢.*/
/* Used by CheckAuthServer */

pre : true
post : (m = null V (m # null A Q(q) = Q(m)))

IsAuthDomain(rr : RR, d: Domain) auth : Boolean
/* returns true if d is the authoritative domain for rr; returns false otherwise.*/
/* Used by CheckAuthServer */

pre : true

post : let zs = {z | Irry € U(rng Db) -
(dname(rrs), type(rra), class(rra)) = (2,NS, class(rr))} in
auth = (DtoZ(d) € {z € zs | Vz1 € zs - MatchCount(z, dname(rr)) >
MatchCount(z,dname(rr))})
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GETNS—ALC
/* The macro GETNS-A, used by CheckAuthServer, retrieves the NS resource records

and the A resource records for a certain domain, newcurdom. m is a DNS response

containing information for newcurdom */

/* Used by CheckAuthServer */
nss = {nrr | nrr € Auth(m) A

(dname(nrr), type(nrr), class(nrr)) = (newcurdom, NS, class(nrr)) };
foreach nrr € nss- /* collect NS rr for newcurdom */
if (dname(nrr),type(nrr), class(nrr)) € dom(newrs)
then newrs(dname(nrr),type(nrr),class(nrr)) =
newrs(dname(nrr),type(nrr),class(nrr)) U {nrr};
else newrs(dname(nrr),type(nrr),class(nrr)) = {nrr};
foreach arr € Add(m)- /* collect glue A rr for NS in nss */
if type(arr) = A A Inrr € nss - dname(arr) = rdata(nrr) A
dname(arr) € SubDomain(ZtoD(nzone))
/* ZtoD(z) returns the domain associated with the zone z*/
then
if (dname(arr),type(arr),class(arr)) € dom(newrs) /* add arr to newrs */
then newrs(dname(arr),type(arr),class(arr)) =
newrs(dname(arr),type(arr),class(arr)) U {arr};
else newrs(dname(arr),type(arr),class(arr)) = {arr};
foreach nrr € nss - (rdata(nrr), A, class(nrr)) € newrs 1 dom Fresh(View(w))
/* find A rr for servers that do not live in nzone */
dname(temprr)=rdata(nrr); type(temprr)=A; class(temprr)=class(nrr);
tempz = NearestZoneKnown(w,temprr);
temprs = Ans(CheckAuthServer(temprr,tempz,ZtoD (tempz),hop+1,newrs));
foreach temprr2 € temprs - dname(temprr) = dname(temprr2) A
type(temprr2) = A A class(temprr2) = class(temprr)
if (dname(temprr2), type(temprr2), class(temprr2)) € dom newrs
then newrs(dname(temprr2),type(temprr2),class(temprr2)) =
newrs(dname(temprr2),type(temprr2),class(temprr2)) U {temprr2};
else newrs(dname(temprr2),type(temprr2),class(temprr2)) = {temprr2};
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This appendix contains the domain names corresponding to the “Top 100 Web

Sites” selected by PC Magazine in 1998 [49]. These domain names were used in Experi-

ment #1, reported in Section 4.9.3.

WWW.
WWW.

WWW
WWW

WWW.

auctionuniverse.com.
classifieds2000.com.
.ebay.com.

.monster.com.

onsale.com.

talk.excite.com.

WWW .
WWW .
WWW.

icq.com.
talkcity.com.
tripod.com.

chat.yahoo.com.

WWW

WWW.
WWW.

WWW
WWW
WWW
WWW
WWW

WWW.
WWW.
.cnet.com.

WWW

.buycomp.com.

chumbo.com.
computers.com.

.killerapp.com.
.necx.com.
.dell.com.
.macromedia.com.
.microsoft.com.

real.com.
3com.com.



www.developer.com.
www.oreilly.com.
www.whatis.com.
www.zdnet.com.
www.broadcast.com.
www.imdb.com.
www.mp3.com.
www.mylaunch.com.
www.theonion.com.
www.ajkids.com.
www.discovery.com.
family.disney.com.
www.learn2.com.

www.nationalgeographic.com.

www.etrade.com.
moneycentral.msn.com.
www.quicken.com.
www.thestreet.com.
quote.yahoo.com.
WWW.gamecenter.com.
www . gamespot . com.
WWW.ign.com.
WWW.Zone.com.
WWW.uproar.com.
www.abcnews.com.
WWW.Cnn.com.
www.msnbc.com.
www.nytimes.com.
wire.ap.org.
Www.anywho.com.
www.switchboard.com.
www.whowhere.lycos.com.
www.worldpages.com.
www.people.yahoo.com.
www.excite.com.
WWW.miningco.com.
home .microsoft.com.
home .netscape.com.
www.yahoo.com.
www.bigbook.com.
www.infospace.com.
WWW.irs.gov.
www.loc.gov.
WWW.census.gov.
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WWW.av.com.
google.stanford.edu.
www.hotbot . com.
www.metacrawler.com.
www.northernlight.com.
WWW.amazon.com.
comparenet.com.
carpoint.msn.com.
netmarket.com.
shopping.com.
www.davecentral.com.
download.com.
www.palmpilotgear.com.
hotfiles.zdnet.com.
www.tucows.com.
WWW.cnnsi.com.
espn.com.
www.golfweb.com.
www.sportingnews.com.
www.usatoday.com.
WWW.aa.com.
www.biztravel.com.
expedia.msn.com.
www.previewtravel.com.
travelocity.com.
www.devhead.com.
WWw.gamelan.com.
slashdot.org.
www.webdeveloper.com.
www.w3.0rg.
www.dejanews.com.
www.hotmail.com.
WWW.mapquest.com.
www.register.com.
www.webring.org.
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