PAGE
xi

ENgine FOR Controlling Emergent
Hierarchical Role-Based Access
(ENforCE HRBAccess)
By

Osama M. Khaleel

B.Sc., Information Technology, Al-Balqa Applied University, Jordan, 2004
A thesis submitted to the Faculty of Graduate School of the

University of Colorado at Colorado Springs

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science in Computer Science
Department of Computer Science

2007
(Copyright by Osama M. Khaleel 2007
All Rights Reserved
This thesis for the Master of Science degree by

Osama M. Khaleel
has been approved for the
Department of Computer Science

by

Dr. C. Edward Chow, Chair

Dr. Terry E. Boult

Dr. Xiaobo Zhou

Date

Osama M. Khaleel (M.S., Computer Science)
ENgine for Controlling Emergent Hierarchical Role-Based Access
(ENforCE HRBAccess)
Thesis directed by Professor Edward Chow

Traditional simple access to sensitive resources does not satisfy today's high-level security requirements. Hierarchical employee system structure in most, if not all, of large-sized companies makes managing and controlling their resources even more complicated. By taking advantage of existing technologies such as PKI, PMI, RBAC, ISAPI filters, Iptables, and XACML, plus, implementing new techniques for session management and conditional access-based on active sessions, this thesis not only provides a generic engine for managing secure hierarchical role based access, but also achieves fine-grained access needed in some critical tasks. A 4-machine test-bed has been built to simulate a generic ENgine for Controlling Emergent Hierarchical Role Based Access (ENforCE HRBAccess) environment. Test-bed results have proved the efficiency, flexibility, and robustness of such an engine, and demonstrated the ability of protecting web-based resources (i.e. accessed through https port 443), in addition to other network-based services such as SSH, RDP, and MySQL.

I honorably dedicate this thesis to my parents in my home country Jordan. I have not seen them for about two years since I've come to the US to pursue my graduate studies. I have to admit that I couldn't have achieved this without their support. Thank you so muck!!!

Contents
Chapter 1

Introduction …………….……………………………………………1

1.1 Related work ………………………………………………………..2
1.2 The base architecture ………………………………………………..4
1.3 Proposed "ENforCE HRBAccess" …………………………………..5
Chapter 2

ENforCE Concepts & Definitions …………………………………..9

2.1 Authentication………………………………………………………...9

2.1.1 Public Key Certificate …………………………………...9

2.1.2 Certification Authority …………………………………..12

2.1.3 Certificate Revocation List ……………………………...12

2.1.4 Public Key Infrastructure ……………………………….13

2.2 Authorization………………..……………………………………….13

2.2.1 Attribute Certificate …………………………………….13

2.2.2 Attribute Authority ……………………………………..14

2.2.3 Privilege Management Infrastructure ………………........15

2.3 Role-Based Access Control (RBAC)……………………………….15

2.3.1 What is RBAC? ……………………………………….16

2.3.1.1 Core RBAC ………………………………....16

2.3.1.2 Hierarchical RBAC …………………………..17

2.3.1.3 Static Separation of Duty (SSD) ……………...17

2.3.1.4 Dynamic Separation of Duty (DSD) ………….18

2.4 eXtensible Access Control Markup Language (XACML) …………..19

2.4.1 XACML Architecture ………………………………….20

2.4.2 XACML Language Components …………………….....21

2.4.3 XACML RBAC Profile ………………………………..23

2.5 Windows related technology…………………………………………24

2.5.1 Windows Server 2003 Active Directory ………………...25

2.5.2 Internet Information Server (IIS 6.0) ……………………27

2.5.3 Internet Server API (ISAPI) filters ………………………27

2.5.4 Global.asax (ASP.NET Application file) ………………...30

2.6 Iptables………………………………………………………………32
Chapter 3 ENforCE Design …………………………………………………………36

3.1 ENforCE Big Picture …………………………………………………37

3.2 ENforCE's Test-bed …………………………………………………41

3.3 ENforCE's PEP ……………………………………………………...43

3.3.1 Session Management & Tracking ………………………..44

3.3.2 PEP's Design & Functionality ……………………………45

3.4 ENforCE's PDP ……………………………………………………..47

3.5 Iptables Control Service (ICS) ………………………………………48

3.6 ENforCE's Entry Points ……………………………………………..49

3.6.1 ISAPI Filter ………………………………………….49

3.6.2 Global.asax …………………………………………..51
Chapter 4 ENforCE Implementation …………………………………………….53

4.1 Specifications…………………………………………………………...53
4.1.1 Hardware…………………………………………………….53
4.1.2 Operating System…………………………………….............54
4.1.3 Software and Packages………………………………………54
4.2 main components………………………………………………………54
4.2.1 ISAPI filter…………………………………………………..54
4.2.2 Global.asax………………………………………………….56
4.2.3 Iptables Control Service (ICS)………………………………58
4.2.4 PDP…………………………………………………………59
4.2.5 PEP………………………………………………………….60
4.2.6 Admin tool…………………………………………………..64
4.2.7 XACML policy files highlights………………………………..69
Chapter 5 Performance Analysis………………………………………………..74
5.1 Web-based resources…………………………………………………75
5.2 Network-based resources……………………………………………..76
5.3 Performance Analysis………………………………………………….77
Chapter 6 Problems and Lessons Learned……………………………………79
6.1 Admin Tool………………………………………………………….79
6.2 CASA policy………………………………………………………...80
6.3 Network-based resource access……………………………………..80
6.4 Learned Lessons…………………………………………………......81
Chapter 7 Future Work and Conclusion………………………………………83
7.1 Future work…………………………………………………………83
7.2 Conclusion…………………………………………………………..84
Appendix A: Installation & Configuration of ENforCE………………………85
- Fedora Core machine……………………………..................................85
- Domain Controller machine……………………………………………..87
- IIS machine…………………………………………………………….90
Appendix B: ENforCE Demo………………………………………………….98
References……………………………………………………………………104
List of Figures
Figure 2.1: PKC vs. AC ……………………………………………………………….12

Figure 2.2: Core RBAC ……………………………………………………………….14

Figure 2.3: Hierarchical RBAC ……………………………………………………….15

Figure 2.4: SSD RBAC ……………………………………………………………….16

Figure 2.5: DSD RBAC ……………………………………………………………….16

Figure 2.6: General XACML Architecture ……………………………………………17

Figure 2.7: XACML Language Model ………………………………………………..19

Figure 2.8: AD role in Windows 2003 ………………………………………………..24

Figure 2.9: Iptables packet flow ………………………………………………………31
Figure 3.1: ENforCE Big Picture ……………………………………………………..35
Figure 3.2: Company's Role Hierarchy ……………………………………………….36

Figure 3.3: ENforCE's Test-bed ……………………………………………………....41
Figure 3.4: ISAPI Entry Point ………………………………………………………...48
Figure 3.5: Global.asax Entry Point ………………………………………………….50

Figure 4.1: Admin Tool PKI/PMI setup……………………………………………....62

Figure 4.2: Admin tool cert management……………………………………………..63

Figure 4.3: AC validation report………………………………………………………64

List of Tables
Table 2.1: ISAPI Filter vs. Extension ………………………………………………..27

Table 2.2: tables and chains in Iptables ……………………………………………...30

Table 2.3: Iptables Rules' Target …………………………………………………….32

Table 2.4: Iptables matching options ………………………………………………...33
Table 3.1: Role-Identity-Resource Assignment ……………………………………..37
Table 5.1: Web-based resource performance results…………………………………71
Table 5.2: Network-based resource performance results (new session)……………..72
Table 5.3: Network-based resource performance results (refresh active session)……73

Table5.4: SIS performance results……………………………………………………73
Chapter 1
Introduction

Security is one of the most critical requirements for any company. Trying to satisfy this requirement is not trivial, and becomes even more complicated when dealing with a very large and open network (i.e. the Internet), and big LANs. The other concern will arise when a company has a hierarchical employee system, and users should access resources based on their ROLES (e.g. what a MANAGER can access CANNOT be accessed by a TEAM-LEADER).
Password-based access is way far from satisfying such high-level security requirements. On the other hand, Public Key Certificate (PKC) [14] does the job, but managing Public Key Infrastructure (PKI) [5, 14, 15] is a big deal. Similar to PKC and PKI, a relatively new Internet standard called Attribute Certificate (AC) [9] has been proposed since early 2000, and the Privilege Management Infrastructure (PMI) [2, 4] was also introduced in the 2000 edition of X509 [24]. As PKC holds the public key to prove the identity of the subject, AC holds a set of attributes to prove what security clearance, permissions, or roles, the entity has.

A well known access control scheme called Role Based Access Control (RBAC) [3, 6, 7, 10, 11, 13] has been widely accepted as a best practice to restricting system access to authorized users. The basic concept of RBAC is that users are assigned to roles, and permissions are assigned to roles; so users don't acquire permissions directly, rather, they gain permissions by having certain role (or roles). This will greatly simplify security administration and role assigning management.
In such a hierarchical role-based employee structure, a very important and effective component that a secure system usually needs is a policy engine that takes advantage of the RBAC model. An open XML-based language called eXtensible Access Control Markup Language (XACML) [8] has shown to be flexible enough to accommodate most access control policy needs. XACML has been standardized in OASIS [25]. A JAVA open source implementation of the OASIS XACML standard is available from Sun [26]. However, currently it only supports the core RBAC feature.
Another thing that we definitely need in such a secure system is a firewall. A standard part of all modern Linux distributions is a NetFilter [27] package which includes Iptables [21, 28] for defining rules on how to deal with network packets, to control system ports, and to restrict access based on certain attribute such as the IP address. The rules of Iptables are grouped into chains (INPUT, OUTPUT, and FORWARD), which gives us more control and flexibility of managing the firewall tables.
1.1 Related Work

As we can see, we are dealing with two main issues here: providing secure access to some sensitive resources, and enforcing/restricting this access according to people's IDENTITES and ROLES. Some of the related works to this thesis are AKENTI [5], PERMIS [12], and PRIMA [29, 30]. The proposed system in this thesis has many essential benefits over these systems, and it's the first work that combines standards like Public Key Infrastructure (PKI), Privilege Management Infrastructure (PMI), Role Based Access Control (RBAC), and eXtensible Access Control Markup Language (XACML). Here are brief comparisons:
· AKENTI and PERMIS don't use a standard policy language such as XACML. AKENTI uses a non-standard format for Attribute Certificates (ACs), and the access control is a classic Access Control List (ACL). In PERMIS, the authentication is agnostic; it is left up to the application, whereas this work uses the standard XACML and X509 Public Key Certificates (PKCs) for access control and authenticating users respectively.

· PRIMA focuses more on PMI and managing privilege authorities. It does use XACML, but it is a C++ implementation with fewer features than the Java's implementation. In addition, PRIMA enforces web-based access only using SAML authorization. In contrast, this thesis uses the Java implementation of XACML, and has a full dynamic Policy Enforcement Point that communicates with a firewall updater daemon to control any network service.
· Finally, this thesis has a unique feature called "Conditional Active Sessions Access (CASA)". CASA provides finer control on the system's policy by allowing a junior role to access a service ONLY IF a senior role (or roles) has an active session for that service.
· Other systems relating to Hierarchical Role Based Access Control (HRBAC) model [16, 17] are Park et al [22] and Keirre et al [23].
 1.2 The Base Architecture

It's important to mention here that the original "basic" idea was taken from a previous work done by Ganesh Godavari at UCCS [1]. His architecture was intended to provide a multi-agency Secure Information Sharing (SIS) system. Ganesh developed SIS prototype on UNIX platform, and it was studied and analyzed as the "base" for this work. Note that when we say the "base", we are not talking about a simple porting from Unix to Windows; rather, it means that the basic/core idea, that we want to provide a secure access to some important resources using role based access control, will be the same. But as for the techniques, standards, and capabilities, there is big amount of differences. The proposed ENforCE HRBAccess system provides significant improvements.

SIS v0.1 uses X509 PKCs for authentication, this will still be used. On the other hand, SIS v0.1 doesn't use Attribute Certificates in its standard format; the implementation was done by using X509 digital certificates with adding the attributes as an extension. This thesis uses the standard ACs as a signed document that has the holder instead of the subject field, and a set of attributes instead of the public key.

SIS v0.1 has an admin tool for generating certificates and building PKI. However, it's a command-line based tool in which one has to manually enter the required info for every single certificate s/he wants to generate. In this work, an admin/management tool has been implemented to provide an easy-to-use GUI for controlling both PKI and PMI.
The last thing and the most important one is that, SIS v0.1 neither has a standard policy language, nor supports Hierarchical RBAC, nor supports non-web-based services; it depends on using IF-ELSE statements in the source code to say "if this person has this Role, then grant access. Else deny!" Of course this means that the system admin/coordinator must know C/C++ to be able to modify the source code of this file. In contrast, this thesis uses the standard XACML policy language, and implements both the core and hierarchical RBAC. Plus, works with any network service with additional active session based access control. Needless to say that, the proposed ENforCE system will be flexible and easy to manage and deploy.

1.3 Proposed "ENforCE HRBAccess"
For simplicity, I'll use "ENforCE" as a name for the system. ENforCE investigates the design and implementation of sharing resources securely based on the Hierarchical Role Based Access Control (HRBAC) model. It utilizes some of the existing tools and technologies, in addition to adding some new features and enhancing others. The other goal is to simplify the management needed for such a system, and therefore reducing the cost. In a high level language we have different types of RESOURCES, a set of ROLES, and a set of OPERATIONS that a role can apply on a resource. Each role may access certain resources, and roles are hierarchical.
ENforCE will provide the following:

a) Authentication. By implementing a Public Key Infrastructure (PKI), a Certificate Authority (CA) will issue, maintain, and revoke X509 Public Key Certificates (PKC). PKCs hold the identity and the public key of its holder. Users will use them to authenticate and prove their identities.

b) Authorization. By implementing a Privileged Management Infrastructure (PMI), an Attribute Authority (AA) or the root "Source Of Authority" (SOA) will issue, maintain, and revoke Attribute Certificates (AC) [9]. ACs hold user's role(s) and are stored in the Active Directory (AD) [18, 19, 20] of the system's Domain Controller. The system will use ACs to identify user's roles and then use them in the authorization process.
c) Management tool. A C#-JAVA based tool is used to provide PKI and PMI functionality in a very efficient and easy-to-use way. The word "Emergent" in the thesis title comes from this tool due to its ability to initialize PKI and PMI very quickly.

d) Policy language. eXtensible Access Control Markup Language (XACML) is used to implement the RBAC model that provides access control policy engine and defines the actual policy files.

e) Policy Enforcement Point (PEP). ENforCE's PEP is a crucial component that receives requests, pulls out the user's AC, consults Policy Decision Point, and returns the final decision. In addition, it communicates with the system's firewall to apply rules depending on the decision.
f) Policy Decision Point (PDP). This component receives XACML requests from the PEP, does the actual evaluation of the request based on defined policy files, and returns a partial decision back to the PEP. Moreover, this component has been enhanced to handle Hierarchical RBAC that is lacked in current Sun's XACML implementation.
g) Internet Server API (ISAPI) filter. ENforCE's ISAPI filter [31, 32] is used to enforce access for all web-based access, including any file type accessed through https, by intercepting user's PKC, submitting the required information to the PEP, and based on the decision from PEP access is granted or rejected.
h) ASP.NET Application file (Global.asax) [33, 34]. This C# based file is used to enforce access control to all non-web-based resources ,network services, by intercepting user's PKC, submitting the required attributes to the PEP, and managing web sessions based on the PEP's decision. Global.asax's implementation in the ENforCE system is event-driven, so it continuously communicates with the PEP based on sessions start, end, and refresh events in order to maintain their states.
i) Dynamic Firewalling: an Iptables-based [21] firewall has been implemented under FedoraCore4, and controlled by a java-based daemon that updates the Iptables rules according to certain commands received from the PEP. The communication between the PEP and the Java firewall updater daemon is protected with mutual certificate-based authentication as we will see later in Chapter 3 and 4.
The following chapters are organized as follows; Chapter 2 presents a background knowledge that defines most of the concepts that ENforCE relies on. Chapter 3 discusses the design of the entire system. In Chapter 4 I will explain the actual implementation, tools, and packages used in ENforCE. Performance analysis is presented in Chapter 5. Problems and lessons learned are summarized in Chapter 6. And finally, future work and conclusion are in Chapter 7.
A user guide and system configuration can be found in the Appendix.
Keywords: Secure Access, RBAC, Hierarchical RBAC, PKI, PMI, PKC, AC, XACML, Iptables, PDP, PEP, ISAPI Filters, Global.asax, Conditional Active Session Access (CASA), policy language.
[image: image1.emf]
Chapter 2

ENforCE: Concepts & Definitions
ENforCE uses many existing technologies and techniques. It also adds and enhances a few ones. So, this chapter serves as a background to define and explain the main concepts and terminologies involved in this thesis. By reading this chapter, a reader will become familiar with knowledge necessary to understand later chapters.

2.1 Authentication

Authentication is the process in which someone provides credentials to prove his or her identity. Basic authentication is usually done by using passwords. Strong authentication can be done by using Public Key Certificates (PKC). In ENforCE, users use PKCs to authenticate with the IIS server.
2.1.1 Public Key Certificate

PKC is a digitally signed document that binds a public key to a subject (identity). This binding is verified and asserted by a trusted Certification Authority (CA). The CA signed certificates with its private key based on technical and physical means. A certificate has a limited life time which is indicated in its signed content. A certificate usually contains the following info:
· The public key being signed.
· Identity info; name, country, city … etc for a person, computer, or entity.
· A validity period. (Not before, Not after)
· A Certificate Revocation List (CRL)'s URL.
· Signer (CA)'s identity.

· A digital signature produced by the CA.

A PKC can be distributed within insecure communication channels, because it can be verified by the other end. Its verification can be done as follows (not for self-signed):
- Obtain the certificate of the CA that has signed the cert in question.
- Use the CA's public key to decrypt the certificate's signature (signed hash), so we get the hash of the certificate's fields. MD5 and SHA1 are typical hash functions used.
- Compute the hash from the fields contained in the certificate and then compare the two hashes.

VeriSign has introduced the concept of certificate classes:
· Class 1: for individuals; usually used in email.
· Class 2: for organization; to prove identity.

· Class 3: for servers and software signing. [35]
Here is an example of what a cert looks like: [36]
Certificate:

 Data:

 Version: 1 (0x0)

 Serial Number: 7829 (0x1e95)

 Signature Algorithm: md5WithRSAEncryption

 Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,

 OU=Certification Services Division,

 CN=Thawte Server CA/emailAddress=server-certs@thawte.com

 Validity

 Not Before: Jul 9 16:04:02 1998 GMT

 Not After : Jul 9 16:04:02 1999 GMT

 Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala,

 OU=FreeSoft, CN=www.freesoft.org/emailAddress=baccala@freesoft.org

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (1024 bit)

 Modulus (1024 bit):

 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:

 33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:

 66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:

 70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:

 16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:

 c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:

 8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:

 d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8:

 e8:35:1c:9e:27:52:7e:41:8f

 Exponent: 65537 (0x10001)

 Signature Algorithm: md5WithRSAEncryption

 93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:

 92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:

 ab:2f:4b:cf:0a:13:90:ee:2c:0e:43:03:be:f6:ea:8e:9c:67:

 d0:a2:40:03:f7:ef:6a:15:09:79:a9:46:ed:b7:16:1b:41:72:

 0d:19:aa:ad:dd:9a:df:ab:97:50:65:f5:5e:85:a6:ef:19:d1:

 5a:de:9d:ea:63:cd:cb:cc:6d:5d:01:85:b5:6d:c8:f3:d9:f7:

 8f:0e:fc:ba:1f:34:e9:96:6e:6c:cf:f2:ef:9b:bf:de:b5:22:

 68:9f

2.1.2 Certificate Authority

A CA is a trusted third party that issues digital certificates to be used by other parties. The main role of the CA is to guarantee that the individual granted the certificate is really who claims to be. The CA can do this by having individuals present their credentials such as passport or driver's license to a financial institution e.g. a credit card company, or your bank. A root CA certificate is a self-signed certificate, which means we can not use another certificate to validate it. So how can we verify the CA certificates? Well, that is done by manually configuring the trusted CAs in the software using them. For instance, IE, Firefox, and Netscape come with pre-installed trusted CA certificates. Examples of commercial CAs are VeriSign, GeoTrust, and Comodo.
2.1.3 Certificate Revocation List (CRL)

A CRL is a list signed by the issuing CA that contains status information (specifically, the serial numbers of the revoked certificates) about the certificates the CA issues. Therefore, a cert must be checked against the corresponding CRL, and if it is revoked, it should not be relied on, it's not valid any more. A CRL either issued periodically or on change (i.e. when a cert is revoked). To prevent spoofing, CRLs are signed by their CAs, so one can verify them by checking the signatures they have.
The type or the scope of a CRL may differ depending on the set of certificates it contains. For example, the scope could be:
· All certificates issued by CA X.

· All CA certificates issued by that CA.
· All certificates revoked because of certain reason; e.g. key compromised.
· Some local info like a set of certificates issued in certain location.
The complete CRL that contains the entire list called the base CRL. To reduce the overhead of issuing huge lists, a CA can issue so called delta CRLs, which only list those certificates whose revocation status has been changed since issuing the base CRL. Examples of typical fields in a CRL are:

Certificate List, Signature Algorithm, Signature Value, Issuer Name, This Update, Next Update, Reason Code. [14]
2.1.4 Public Key Infrastructure

PKI is the whole structure that contains a CA and all its arrangements; including issuing and managing PKCs and CRLs. Thus, it represents a comprehensive system to provide public key encryption and digital signature services. By managing public keys, an organization deploying a PKI can establish a trustworthy network environment.
2.2 Authorization

Authorization is the process that is used to determine whether the subject has the required permissions to access some protected resources. In ENforCE, this process takes place after the Authentication process (2.1) is done successfully. The system uses Attribute Certificates (ACs) along with the policy engine to authorize access.
2.2.1 Attribute Certificate

 AC is a digitally signed document that binds a set of attributes, e.g. membership, role, or security clearance, with the AC holder. So, an AC contains no public key, and is signed by an Attribute Authority (AA). ACs are similar to PKC, so to make the difference clearer, we can consider this analogy:
A PKC can be considered like a passport: it identifies the holder, tends to last for a long time, and should not be trivial to obtain. Whereas, an AC is more like a visa: it is usually issued by a different authority, and its lifetime is shorter. [9] So, why don't we just store those authorization attributes as an extension in a PKC? Well, there are two reasons:
1) Authorization attributes don't have the same lifetime as the holder's identity does; that means, if we store these attributes in a PKC, either we give a PKC a short lifetime and lose the usefulness of long lasting identity, or we issue it with long validity period and give the authorization attributes more time than they should have.
2) The issuer of a PKC is not usually the same as the issuer of an AC. So it is better to separate them in two different documents.
Figure 2.1 shows the difference between PKC and AC: [1]
[image: image15.emf]

Figure 2. 4 : SSD RBAC [40]

[image: image16.emf]

Figure 2. 4 : SSD RBAC [40]

Figure 2.1: PKC vs. AC
2.2.2 Attribute Authority

An AA is a trusted third party that is responsible for issuing, maintaining, and revoking attribute certificates (ACs). The root AA sometimes called the Source Of Authority (SOA). Similar to CRL, an AA can have an Attribute Certificate Revocation List (ACRL), however, in the ENforCE system we don't need this because:
1) ENforCE uses the "PULL" model, which means that a client does not get his/her AC, instead, the server (ENforCE's PEP in our case) pulls ACs from the Active Directory.
2) Revocation is done by removing the user's AC from the Active Directory.

2.2.3 Privilege Management Infrastructure

PMI is the entire structure that assigns privilege attribute information. It includes the SOA and AAs with issuing, maintaining, and revoking ACs based on a policy that the PMI specifies for ACs issuance and management.
2.3 Role-Based Access Control (RBAC) Model

The concept of roles has been used in software applications for about 30 years, but it is only within the last decade that role-based access control has emerged as a full-fledged model as mature as Mandatory Access Control (MAC) and Discretionary Access Control (DAC) [37] [38]. RBAC model has matured to the point where it is prescribed as a generalized approach to access control [17]. For example, RBAC was found to be "the most attracted solution for providing security features in multi-domain digital government infrastructure" [39]. A very important feature of the RBAC model is that it greatly simplifies security administration and role management. For instance, if a user changes his/her position within the organization, then we can simply assign this user with the new role and remove him from the old one. But without using RBAC, we have to revoke the old permissions individually, and then grant the new ones.
2.3.1 What is RBAC?

Generally speaking, RBAC is a mechanism for restricting access to authorized users. The basic idea is that, roles are assigned to users, and permissions are associated with roles – not directly with users. Since RBAC is considered a general approach for access control, it is policy neutral; not limited to a specific type of organizations. In the RBAC standard, the NIST RBAC model has defined four types: Core RBAC, Hierarchical RBAC, Static Separation of Duty (SSD), and Dynamic Separation of Duty (DSD).
2.3.1.1 Core RBAC

Also called "Flat RBAC", embodies the essential aspects of RBAC, which is: users are assigned to roles, permissions are assigned to roles, and users acquire permissions by being members of roles. In the specs, this model requires that role and permission assignment can be many-to-many. So, a user can be assigned to many roles, and a single role can have many users. This type captures the features of the simple group-based access control implemented in many operating systems.
[image: image17.emf]2. XACML request attributes

[image: image23.jpg]ACInfoForm

RBAC SETUP

Certificates Certificates

Holder

Rolefs):

Not After:

Not Before:

This Attribute Certificate is O

CN= SIS AA demo, EMAIL= SIS AAdemo@uccs.edu,
OU= SIS, O= UCCS, L= Colorado Springs,
ST= COLORADO, C=US

EMAIL= echow@sis.uccs.edu, OU= SIS,

0= UCCS, L~ Colorado Springs,
ST- COLORADO, C- US, CN= Edward Chow

Personnel : Employee

Tue Jun 20 02:17:55 GMT-06:00 2006

Thu Jul 20 02:17:55 GMT-06:00 2006

1. Users (U): A user can be a human being or a system.
2. Roles (R): a role is a job function/title within the organization with some associated permissions to some protected resources.
3. Permissions (P): a permission is an authorized right to perform an action on a resource.
2.3.1.2 Hierarchical RBAC

[image: image18.jpg]

It is very common that roles in an organization have many overlaps in permission assignment. For instance, a sales manager can have the same permissions as the salesman to view orders, in addition to that, he can have additional permissions like posting, deleting, and modifying orders. So role hierarchy has been introduced as an enhancement and a very important feature to the RBAC model, in which senior roles inherit permissions from more junior roles.
[image: image19.jpg]

 [image: image2.emf]
It is similar to Core RBAC with the addition to Role Hierarchy (RH). This can be General RH or Limited RH. In General RH, roles can have multiple inheritance relations, while in Limited RH, a role may have one or more immediate ascendant, but restricted to a single immediate descendant.
2.3.1.3 Static Separation of Duty (SSD)
Separation of duty refers to the partitioning of tasks and privileges among roles to prevent a single role from gaining too much authority. Of course, this can help reduce major errors by deliberating amongst multiple users. This also provides the Least Privilege Principle (LPP), so that the user is given no more privilege than is necessary to perform his/her job. Conflict of interest may arise if a user is assigned permissions from conflicting roles. SSD can solve this by enforcing some constrains on role assignment. [image: image3.emf]
[image: image20.jpg]

As we can see, in addition to role hierarchy, we have a Separation Of Duty (SOD) constraint that states: two mutually exclusive roles cannot be simultaneously assigned to the same user.
2.3.1.4 Dynamic Separation of Duty

DSD allows a user to have two or more mutually exclusive roles when they do not cause conflict of interest when acted in independently, but produce concerns when acted in simultaneously. Namely, we don't permit a user to have two roles that may raise conflict at the same time.
[image: image21.jpg]5| Secure Information Sharing

CreatoANew Create ANew Atiibute
Cerificate Authorty Authority
LoadAnEsisting LoadAnExisting
Certificate Authorty Attributo Autharith
Issue Many DCs Based Issue Many ACs Based
OnATextfie OnATextFie
IssueA Single Digtal
Certficate.

[image: image4.emf]
From the figure above, we can observe the constraint in DSD that no two mutually exclusive roles can be activated simultaneously in the same time for the same user.
2.4 eXtensible Access Control Markup Language (XACML)
XACML is an XML-based OASIS standard that describes both
· A policy language: to describe general access control requirement.
· And a request/response language: to form a query to ask whether or not a given action should be allowed, and to interpret the result as a response containing the decision as one of the four possible values: Permit, Deny, Indeterminate (an error occurred, or some required value was missing, so the decision cannot be made), or Not Applicable (the request cannot be answered; no resource matches).
[image: image22.jpg]Revoke DC

2.4.1 XACML Architecture
Figure 2.6: General XACML Architecture
In a general XACML-based architecture we have the following interactions:
(1) A request is sent to the Policy Enforcement Point (PEP).
(2) The PEP builds an XACML request containing the Subject, Resource, and Action attributes and sends it to the Policy Decision Point (PDP).
(3) The PDP queries an attribute source (sometimes called Policy Information Point (PIP)) to collect any additional attributes as necessary.
(4) The PDP examines the request, and tries to find a policy that applies to this request.
(5) The PDP builds an XACML response, and sends it back to the PEP with the Decision.

(6) The PEP allows or denies access to the requested resource.
The architecture of ENforCE system is presented in details in Chapter 3.
2.4.2 XACML language components

The main three components in XACML are Rule, Policy, and PolicySet, in addition to a number of sub-components that are all defined in the XACML policy language. Figure 2.7 represents the whole XACML language model. I will explain each component in more details below.
[image: image5.emf]
Figure 2.7: XACML Language Model [42]
1) Rule. Rule is the basic unit in a Policy, and can be evaluated based on its content. It has three components:
a. Target: a set of Resources, Subjects, Actions, and Environment to which the rule should apply. If the <Target> element is absent from a <Rule>, the target of the parent <Policy> element is used.
b. Effect: to define the access decision that is reflected by this rule. Only two values are allowed here: "Permit" and "Deny".
c. Condition: to refine the applicability of the rule furthermore; by returning a Boolean of evaluating the included conditions.
2) Policy. Policy consists of four components:
a. A target: defines a set of Subjects, Resources, Actions, and Environments that the policy is intended to apply to.
b. A set of Rules: as defined in 1.
c. Obligations: optionally added, which return certain actions to the PEP that must be enforced with the authorization decision.
d. Rule-combining algorithm: to specify how the results from multiple Rules should be combined to form a single Decision for the Policy. Examples of combining algorithms are:
i. Ordered/Unordered Permit Overrides.
ii. Ordered/Unordered Deny Overrides.

iii. First Applicable.
iv. Only-One-Applicable.

3) PolicySet: it has the following four components:
a. A Target: the target intended to apply to this PolicySet.
b. Obligations: same as 2. (c).
c. A set of Policies, PolicySets, or references to them.
d. Policy-combining algorithm: to combine multiple Policies/PolicySets results into a single Decision. Example values are same as 2) d.
For more details about XACML tags, components, and elements: please refer to XACML 2.0 Core Specifications [42].
2.4.3 XACML RBAC Profile

In addition to the Core profile, XACML defines a profile for RBAC. The main two components in the XACML RBAC profile (only Core and Hierarchical) are: Permission PolicySet (PPS) and Role PolicySet (RPS). There should be one PPS and one RPS for each defined Role.
1) Permission <PolicySet>: PPS is a PolicySet tag (<PolicySet>) that defines whatever direct Policies, Rules, and predicates needed to the Permissions associated with a certain Role. A PPS can also contain a set of PPS references using a very important tag called "<PolicySetIdReference>" to inherit permissions from the "more junior role" associated with that PPS reference. Another essential condition to support role hierarchy is that the <Target> element of a PPS (if exists) MUST NOT limit the Subjects that the <PolicySet> is applicable to; so we can define and limit them in the corresponding RPS. Each PPS is identified by the PolicySetId attribute in <PolicySet>.
2) Role <PolicySet>: RPS is a PolicySet that defines the Role in question by having a <Target> that applies ONLY to a specific Subject, plus one (and ONLY one) PPS to connect this Role with its permissions defined in the corresponding PPS.
The creation of the PolicySet elements can be summarized as follows:
1. There is exactly one RPS and one PPS for each role.
2. Each RPS has a Target that applies only to subjects associated with its role Attribute, and a single PolicySetIdReference to the corresponding role's PPS.
3. Each PPS should apply to any subject and contain whatever Policies and Rules needed to define the Role's permissions.
4. Finally, if the role is senior to any other roles, the role's PPS should contain a PolicySetIdReference to each one of its junior's PPS.

2.5 Windows Related Technologies

The environment which ENforCE runs under is Microsoft Windows. This applies on two main components in the system: the Application Server and the Domain Controller. As explained in Chapter 3, the gateway/firewall machine is a UNIX based system. ENforCE uses existing technologies such as IIS and Active Directory. In addition, it extends others such as ISAPI filter and ASP.NET application file.
2.5.1 Windows Server 2003 Active Directory (AD)

AD is a distributed directory service included in the Windows server 2000/2003 operating systems. It is the Microsoft's implementation of the Lightweight Directory Access Protocol (LDAP). Internally, AD is similar to a complicated and enhanced database, so we can look at AD as a hierarchical framework of objects and directory services used to store and manage all information about network resources across the domain. Network resources include: computers, groups, users, domains, security policies, and any type of user defined objects. Some of the main goals of AD are:
· Allow users to access resources throughout the domain using a single logon.

· Simplify management; so that administrators can centrally manage both users and resources (central control plus decentralized administration).
An Active Directory can be used for one of three purposes: [20]
· Internal Directory. It is used within the corporate network for publishing info about users and resources within the enterprise. For example, a Virtual Private Network (VPN) connection for the company's employee.
· External Directory. It is used when directories are located on servers in the corporate Local Area Network (LAN) and the public Internet.
· Application Directory. It is used to store private directory data relevant only to the application in a local directory.
The following figure shows how central/vital role AD plays in Windows Server 2003:
[image: image6.png]Windows
Servers

Windows
= Management
u Profile.
+ pccount Network + Hanagement
Information Information Profie

Privileges Printers * Network
« profiles File Shares Information
+ Policy Policy

Other
Directories

Network
Devices

« White Pages

« Configuration
« E-Cammerce

© Quality of

Manage ability

Security

Service Policy

Interoperability

w] /N NS

Firewall

+ User Registry ren el

i G, Copil=s + Confiquration
« Mailbox « Server Soaupty Foliey

« VPN Policy

Information
+ Address Back

Configuration
« Single Sign-an
« Application-

Specific
Directary
Information
Policy

Figure 2.8: AD role in Windows server 2003 [20]
As mentioned earlier, AD contains a lot of resources and objects, each of which has hundreds of attributes and properties. The following are examples of objects that ENforCE uses:

· Organizational Units (OUs): they are designed to reduce the number of domains in an organization. OUs often replace domains/sub-domains in older NT 4.0 system. Thus, instead of representing each department in an organization as a domain, with AD, they can be restructured as OUs.
· Users: this is a regular user (i.e. an employee) that can have an account with assigned security permissions. Some of the built-in attributes that ENforCE uses in this object are:
· sAMAccountName: the user ID used to identify this user within the domain. It's also the login name that the user should use to logon to the domain.
· userCertificate: this property used to store the user's X.509 digital certificate.

· attributeCertificateAttribute: this property used to store the user's Attribute Certificate.
2.5.2 Internet Information Services (IIS 6.0)

IIS is a web server, bundled in the Windows server 2003, which provides reliable, manageable, and scalable web application infrastructure. IIS supports SSL mutual authentication using digital certificates.

2.5.3 Internet Server API (ISAPI) Filters

ISAPI filters are Dynamic Linking Libraries (DLLs) that can be used to enhance and modify the functionality of IIS. They always run on IIS server filtering every request. They are considered powerful because they can modify both incoming and outgoing DataStream. ISAPI filters can be install globally (i.e. apply to all websites on IIS), or per site level.
Examples of ISAPI filters uses are: [31]
· Modify a request after authentication is complete.
· Run the processing when the connection with the client is closed.

· Perform special logging and traffic analysis.
· Perform costumed authentication.

· Handle encryption and compression.

ISAPI filters tend to run even faster than standard exe as they are optimized to run the web server platform and once loaded into memory, the server does not need those extra CPU cycles to execute the filter; it's already loaded into memory.
So, how ISAPI filter work?
An ISAPI filter is contained in a separate DLL and must export two entry-point functions:
· GetFilterVersion: let the filter tell the server the filter version, description, and most importantly the events that the filter is interested in. this function is called only once when the filter is loaded.
· HttpFilterProc: the server calls this entry-point function whenever an event (the filter is registered to) occurs.
When IIS starts up, it loads the filter and calls the filter's GetFilterVersion passing a pointer to the structure as parameter. The filter populates the structure with the version and descriptive information and specifies what event notifications it should receive. Examples of event notifications are:
· SF_NOTIFY_READ_RAW_DATA:

· SF_NOTIFY_PREPROC_HEADERS

· SF_NOTIFY_URL_MAP

· SF_NOTIFY_AUTHENTICATION
· SF_NOTIFY_AUTH_COMPLETE

· SF_NOTIFY_SEND_RAW_DATA

· SF_NOTIFY_LOG

When a request hits the server and one of the registered events occurs, IIS calls HttpFilterProc passing the appropriate notification info. ISAPI uses this notification data structure to perform any required processing. Once processing is compete, ISAPI returns a STATUS code to IIS, and IIS continues processing the HTTP request/response.
Note: for performance reasons, it is really recommended that a filter only registers to notifications it needs to process; because some notifications are very expensive.
With all advantages and power that ISAPI filters have, some drawbacks include:
· They have to be written in unmanaged C/C++ language.

· If the filter crashes, it brings down the whole web server.
Finally, there is also another type if ISAPI called ISAPI Extension. ISAPI extensions are similar to filters in that they are also DLL files, share the process space of the service, and once loaded they remain in memory. However, there are many significant differences between them: [31]
	A server extension:
	A filter:

	Runs when referenced in a URL.
	Is called for every URL the server processes.

	Is explicitly invoked, for example by http://myserver/myprog.dll?
	Runs automatically for any URL sent to the server if the registered event occurs.

	Is loaded on demand, the first time a user calls it.
	Is loaded when the service starts because of its registry entry

Table 2.1: ISAP Filters vs. Extensions

As we can see, extensions are more similar to CGI scripts or ASP pages but they are much faster and have more control. In contrast, filters work on lower level; they can get a request before IIS even sees it!
2.5.4 Global.asax (ASP.NET Application File)

Global.asax, and sometimes called ASP.NET Application file, is an optional file that resides in the root directory of the ASP.NET application and contains code to handle application-level and session-level events raised by ASP.NET. This file is protected so that any direct HTTP request to it is rejected (users cannot download or view its content). At runtime, Global.asax is compiled into a dynamically generated .NET framework class derived from the "HttpApplication" base class. [33]
Example of events that Global.asax can register for are: [34]
a. Application_Start: Fired when the first instance of the HttpApplication class is created. It allows you to create objects that are accessible by all HttpApplication instances.
b. Application_End: Fired when the last instance of an HttpApplication class is destroyed. It's fired only once during an application's lifetime.
c. Application_Error: Fired when an unhandled exception is encountered within the application.
d. Application_BeginRequest: Fired when an application request is received. It's the first event fired for a request, which is often a page request (URL) that a user enters.
e. Application_EndRequest: The last event fired for an application request.
f. Application_AcquireRequestState: Fired when the ASP.NET page framework gets the current state (Session state) related to the current request.
g. Application_AuthenticateRequest: Fired when the security module has established the current user's identity as valid. At this point, the user's credentials have been validated.
h. Session_Start: Fired when a new user visits the application Web site.
i. Session_End: Fired when a user's session times out, ends, or they leave the application Web site.

So, when a request comes to an ASP.NET application, ASP.NET checks for Global.asax file and if exists, the code of the corresponding event (If any) is executed. The last two events are the most important to ENforCE, since they are used to control and manage web sessions. For example, when a user's session ends, either by closing the browser or the session's timeout expires, ASP.NET calls "Session_End" and executes whatever code inside it. (More details about this are in Chapter 3 and 4).

2.6 Iptables

A firewall is one of the critical parts for any network connected to an unprotected network such as the Internet. Iptables is the most popular firewall running on Linux-like systems. It is a packet selection, mangling, and filtering system that has been built over the NetFilter framework. Iptables consists of three built-in TABLES; each table contains a set of CHAINS, and each chain has a set of RULES.
The following table shows these components in details:
	Table
Type
	Table
Function
	Packet transformation chain in Table
	Chain Function

	Filter
	Packet filtering
	FORWARD
	Filters packets to servers accessible by another NIC on the firewall.

	
	
	INPUT
	Filters packets destined to the firewall.

	
	
	OUTPUT
	Filters packets originating from the firewall

	Nat
	Network Address Translation
	PREROUTING
	Address translation occurs before routing. Facilitates the transformation of the destination IP address to be compatible with the firewall's routing table. Used with NAT of the destination IP address, also known as destination NAT or DNAT.

	
	
	POSTROUTING
	Address translation occurs after routing. This implies that there was no need to modify the destination IP address of the packet as in pre-routing. Used with NAT of the source IP address using either one-to-one or many-to-one NAT. This is known as source NAT, or SNAT.

	
	
	OUTPUT
	Network-address translation for packets generated by the firewall.

	Mangle
	TCP header modification
	PREROUTING POSTROUTING OUTPUT INPUT FORWARD
	Modification of the TCP packet quality of service bits before routing occurs

(Rarely used in small environments)

Table 2.2: tables and chains in Iptables [28]
A packet flow in Iptables can be visualized in the following diagram:

[image: image7.png]PacketIn

nat Table manglo Table
POSTROUTING Chain PREROUTING Chain
manglo Table nat Table

POSTROUTING Chain

PREROUTING Chain

7y

v

filtor Table

OUTPUT Chain Ry
Data for
Yes the frewal? No
nat Table manglo Table manglo Table
OUTPUT Chain INPUT Chain FORWARD Chain
manglo Table fiter Table
OUTPUT Chain FORWARD Chain
manglo Tabls
o) POSTROUTING Chain
Firowall Roply. nat Table
POSTROUTING Chain
Local Procossing fitor Table erthen
of Data INPUT Chain

Network B

Figure 2.9: Iptables' packet flow [27]
Each rule has a target; after an IP packet has been inspected by the rule, it tries to identify what type of action should be applied. The following table lists the built-in targets (actions):

	Target
	Description

	ACCEPT
	· Iptables stops further processing.
· The packet is handed over to the end application or the operating system for processing

	DROP
	· Iptables stops further processing.
· The packet is blocked

	LOG
	· The packet information is sent to the syslog daemon for logging

· Iptables continues processing with the next rule.
· As we can't log and drop at the same time, it is common to have two similar rules in sequence. The first will log the packet, the second will drop it.

	DNAT
	· Used to do destination network address translation. i.e. rewriting the destination IP address of the packet

	SNAT
	· Used to do source network address translation rewriting the source IP address of the packet The source IP address is user defined

	MASQUERADE

	· Used to do Source Network Address Translation. By default the source IP address is the same as that used by the firewall's interface

Table 2.3: Iptables Rule's Target [28]
Another important thing in Iptables is that it uses a collection of options (i.e. switches) to define packet characteristics that this rule should apply to. The most common command switches for rule matching criteria are:
	command
Switch
	Description

	-t <table>
	If you don't specify a table, then the filter table is assumed. The possible built-in tables include: filter, NAT, and mangle

	-j <target>
	Jump to the specified target chain when the packet matches the current rule.

	-A
	Append rule to end of a chain

	-F
	Flush. Deletes all the rules in the selected table

	-p <protocol-type>
	Match protocol. Types include, ICMP, TCP, UDP, and all

	-s <ip-address>
	Match source IP address

	-d <ip-address>
	Match destination IP address

	-i <interface-name>
	Match "input" interface on which the packet enters.

	-o <interface-name>
	Match "output" interface on which the packet exits

Table 2.4: Iptables matching options [28]
Chapter 3
ENforCE Design

The ENgine for Controlling Emergent Hierarchical Role Based Access, ENforCE, has been designed to follow Service Oriented Architecture (SOA) as much as possible. SOA has proven to be flexible, reusable, and cost-effective for enterprise-level solutions. Since ENforCE runs under Windows environment, there could be a debate that SOA is usually platform independent. This is right, so it is better to say: Windows Service Oriented Architecture (WSOA).

The design of ENforCE represents a generic engine for guarding any resources/services on the network. With role hierarchy support, it allows users to securely access these resources based on their roles within the organization. It also provides an advanced feature, called Conditional Active Session Access, which enforces a junior role to ONLY have access IF its senior role has an active session for the same service.
In addition to that, ENforCE has a management tool that simplifies the management of both Public Key Infrastructure (PKI) and Privilege Management Infrastructure (PMI), allowing an administrator to manage Certificate Authorities (CAs) and Attribute Authorities (AAs) with support for all Active Directory (AD) related interactions.

ENforCE takes advantage of many existing technologies and tools, and it enhances them as necessary. Note that: this chapter does not explain these technologies; rather, it elaborates on how ENforCE is designed and how it uses and improves those technologies. If the reader is not familiar with any concept here, the reader should refer to Chapter 2 and read the related sections.
3.1 ENforCE "Big Picture"

Figure 3.1. ENforCE Big Picture
A test-bed has been built to simulate real life scenarios that show the ability of the system to control and manage secure hierarchical role-based access. Currently, three services are supported besides the regular web-based (https) access:
· Secure Shell (SSH): a network protocol that allows establishing a secure channel between a local and a remote computer. It provides authentication, integrity, and confidentiality of data exchanged between them [44] [45].
· MySQL: a multi-threaded, multi-user SQL database management system [46].
· Remote Desktop Protocol (RDP): a protocol that allows a user to connect to a computer running Microsoft Terminal Services [47].
A fake company called "SecuForce" has been set up with many resources to get the best testing results. The role hierarchy in this company looks like:
[image: image8.png]

Figure 3.2. Company's Role Hierarchy

And here is the Role-Identity-Resource assignment in SecuForce Company:
	ROLE
	NAME
	DIRECT ACCESS

	CEO
	PAM ZALABAK
	EnforceAdminTool

	CFO
	BRIAN BURNETT
	Finance-Management
SSH
MySQL

	Project Manager
	TERRY BOULT
	Projects-Controller
RDP

	IT Manager
	KATE TALLMAN
	Resource-Management
Passwords-Reset

	Sales Manager
	JIM TIDWELL
	Sales-Write

	Accounting Manager
	JULIE BREWSTER
	Finance-Write

	Network Admin
	EDWARD CHOW
	VLAN-Management
SSH

	Database Admin
	XIAOBO ZHOU
	MySQL Interface
MySQL
SSH IF(ITMgr & CEO)

	Developer
	OSAMA KHALEEL
	Progress-Reports-Submission
RDP IF(ProjMgr)

	Engineer
	BILL KRETSCHMER
	Engineer-update-Read

	Accountant
	AMIE WOODY
	View-Orders
MySQL IF(ANY)

	Salesman
	LEVI GRAY
	Sales-Read

Table 3.1: Role-Identity-Resource Assignment
Some of the many scenarios that have been successfully tested in this system include:
Web resources:
Scenario1: Demonstrates that only users with proper roles can have access. (Write)
Scenario2: Demonstrates that only users with proper roles can have access. (Read).
Scenario3: Demonstrates that a senior role inherits its junior role's permissions. (Upload).
Scenario4: Demonstrates that any role can access the company's public directory.
Network resources:

Scenario5: Demonstrates that a role and its seniors can access network services (e.g. SSH).
Scenario6: Demonstrates that a role can access a service IF a CERTAIN senior role has an active session for this service.
Scenario7: Demonstrates that a role can access a service IF ANY of its senior roles has an active session for this service.
Scenario8: Demonstrates that a role can access a service IF N-Senior-Roles have active sessions for this service

Admin tool:

Scenario9: Demonstrates some features of the Admin/Management tool.

· Revoke the attribute certificate of a user.
· Issue a new attribute certificate for a user (one got hired or got promoted).

· Check/Verify an attribute certificate by querying the Active Directory.

So, to get a full understanding of how all of this work, here are the details of the system's test-bed and the main components that comprise ENforCE:
1) ENforCE's Policy Enforcement Point (PEP).

a. Session management and tracking.

b. PEP's Design and Functionality.

2) ENforCE's Policy Decision Point (PDP).

3) Iptables Control Service (ICS).

4) ENforCE's entry points
a. ISAPI Filter.

b. Global.asax
3.2 ENforCE's test-bed

Figure 3.3 shows the test-bed which consists of four machines:
1) Windows Server 2003 w/ Active Directory. This machine is the Domain Controller (DC) where the AD is installed and run. Users and machines have been created in the AD. In addition, MySQL and RDP services are running on it also.
2) Windows Server 2003 w/ IIS. This machine represents the web server where IIS is installed and run. It has two websites listening for both Http and Https (ports 80 and 443), and it has been enhanced with two entry-points: ISAPI and Global.asax. Thus, it is considered the "Internal Gate" of the system that a user should begin with to access system's resources. Note that, IIS has been assigned with two private IP addresses, each one maps to one website.
3) Windows XP. This is a regular client machine for testing purposes. Note that, these three machines (1, 2, and 3) represent the system's Local Area Network (LAN), and have private IP addresses. Therefore, they cannot be accessed directly. And that's why we have the fourth machine.
4) Fedora Core 4. This machine is the system's Gateway. It has Iptables running, so it does Firewalling, DNAT, and SNAT. It is considered the "External Gate" that any access to the LAN should go through by having two Network Interface Cards (NICs); one is assigned with a private IP (10.0.0.1) and connected to the LAN, and the other is assigned with four public IP addresses (i.e. IP aliasing) and connected to the outside world.
a. 128.198.162.50: is the Gateway it self.

b. 128.198.162.51: maps to the Domain Controller.

c. 128.198.162.52: maps to IIS (http://ncdcrx3.uccs.edu website).

d. 128.198.162.53: maps to IIS (http://ncdcrx4.uccs.edu website).
The following diagram shows ENforCE's network structure with all IP assignments:

[image: image9]
Figure 3.3: ENforCE Test-bed
3.3 ENforCE PEP

Policy Enforcement Point (PEP) is the system entity that controls access in accordance to a policy, by making requests to a PDP and enforcing the decision which is the result of evaluating a set of XACML policies to "Permit", "Deny", "Indeterminate", or "Not Applicable". PEP was enhanced to handle session management and to enforce Conditional Active Session Access (CASA).

3.3.1 Session Management and Tracking

PEP maintains a table (called Active-Sessions Table) that consists of two columns: a key and a value; the key is set to be a concatenation of the session-ID and the service-name, while the value is set to be a concatenation of the Role, Subject field, URL, and IP address. An entry in this table will look like: ('*' is the delimiter)

	294gr5YB43k90*ssh
	Engineer*PKC Subject*https://ncdcrx4.uccs.edu/ssh/net.aspx*128.198.162.50

A special XML based file has been developed to represent the CASA policy. In addition, a tree structure has been built to represent roles internally and to allow the PEP to answer the question: Is Role (A) senior to Role (B)?
By maintaining this sessions table, specifying a policy for CASA, and representing roles in a tree structure, PEP can efficiently control/enforce access that is constrained by another active session. The internal tree is exactly similar to Figure 3.2 (Role Hierarchy). And an entry in the session policy file looks like this:

<service name="SSH">

<Senior>ProjectManager</Senior>

<Junior>Developer</Junior>

</service>

This XML piece means that a Developer role can access SSH IF AND ONLY IF a Project Manager role has an active session for SSH.
The engine that parses this file supports three cases:
1) A CERTAIN senior role is required: by specifying one senior role. This would be the same as the XML entry example above.
2) ANY senior role is required: by using the key word "ANY" in the <Senior> tag:

<service name="MySQL">

<Senior>ANY</Senior>

<Junior>Accountant</Junior>

</service>

3) N-Senior-Roles are required: by having N entries with same service name and same Junior role, but different Senior roles:
<service name="SSH">

<Senior>IT Manager</senior>

<Junior>DatabaseAdmin</junior>

</service>

<service name="SSH">

<Senior>CEO</senior>

<Junior>DatabaseAdmin</junior>

</service>

3.3.2 PEP's Design and Functionality

This component is basically a Java Servlet [48] running under Tomcat [49], and its main job is to receive http requests from either one of the IIS entry points (ISAPI filter or Global.asax) and returns an XML response containing the final decision.

 There are three types of requests that PEP may receive:

1) Requests from ISAPI filter: these http requests are always for accessing web resources. They contain the PKC's subject field, URL, method, and service='web'.

2) Requests from Global.asax to OPEN a service: these requests are sent when a user initially tries to activate a web session, or while a web page is refreshing a currently active session. They contain the PKC's subject field, URL, service='NT-service-name', session ID, IP address, and action='open'.

3) Requests from Global.asax to CLOSE a service: these requests are sent when a session ends; the user clicks the "End Session" button, closes the browser or the session timeout expires. They contain similar attributes to type 2, but action='close'.
Note that the PEP is protected by the firewall, so no one can submit requests to it except IIS.
After the PEP has received an http request, it does the following:

· If the request is type 3, it sends a command to the ICS to close the specified network service for the accessing IP address, and does session cleaning.

· If the request is type 1, it pulls out the user's AC from the Active directory, validates the certificate, extracts the role(s), builds an XACML request, and sends it to the PDP. The PEP receives an XACML response and forwards it to the ISAPI filter.

· Finally, for request type 2: the PEP gets the role from the user's AC and consults the PDP. If the PDP's decision is NOT 'Permit', it returns this decision to Global.asax and that's it. If the decision is 'Permit':

· It checks whether there is any session policy states that this Role has to have a senior active session.

· If a senior-active-session is not required, it sends a command to the ICS to open the firewall for this IP and this service.

· If a senior-active-session is required, it checks the Active-Sessions Table (AST) to see whether the required senior role is online. If yes, it opens the firewall and returns 'Permit', else, it returns 'Deny' and closes the firewall if it is already opened for that IP and service name.

3.4 ENforCE PDP

Policy Decision Point (PDP) is the system entity that evaluates a set of policies or policy sets and renders an authorization decision. PDP receives XACML requests from the PEP and returns XACML responses containing the decision. The most important thing to mention in terms of design is that, PDP has been extended to handle hierarchical RBAC; a new module has been added to include PPSs in addition to RPSs in the evaluation process.

A request example looks like:

<Request>

<Subject>

<Attribute DataType="string">

<AttributeValue> Edward Chow </AttributeValue>

</Attribute>

</Subject>

<Resource>

<Attribute DataType="anyURI">

<AttributeValue>

https:/ncdcrx3.uccs.edu/fileUpload.aspx

</AttributeValue>

</Attribute>

</Resource>

<Action>

<Attribute DataType="string">

<AttributeValue> read </AttributeValue>

</Attribute>

</Action>

<Environment/>

</Request>
And simply, the response can be:

<Response>

<Result>

<Decision>Not Applicable</Decision>

</Result>

</Response>
3.5 Iptables Control Service (ICS)

As stated earlier, ENforCE supports any type of resources; web and network resources. The web resources are managed by IIS, while network resources can exist anywhere on the LAN. Therefore, they are protected directly by the system's firewall. And since the PEP does the authorization process, we need some way to let the PEP talk to the Iptables firewall to update it as necessary, and that's what ICS does. ICS is a daemon running on the firewall machine, receives Iptables commands from the PEP, and updates the firewall rules accordingly.

ICS is used to update firewall rules. It is critical to protect ICS because if anyone can talk to this service and modify the firewall, game is over! So how it is protected?

In ENforCE, the ICS is highly protected from inside and outside;

· It is protected from the outside world by the Iptables itself; ICS port number is blocked and can be accessed only from the IIS machine.

· Although the firewall prevents others from inside the LAN to communicate with ICS, it's even extra-guarded by accepting only "trusted" Secure Socket Layer (SSL) connections. Thus, only the PEP can present a trusted PKC and mutually authenticate with ICS.
3.6 ENforCE's Entry Points
Basically, we have two types of access in this system:
· Web Based Access (WBA): this type includes any access that occurs through the https port: 443. It can be any web resource running under IIS such as: HTML pages, ASP, ASPX, PHP, CGI script, an image … etc.
· Network Based Access (NBA): this applies to any other services that run on the network. The port number here depends on the service; it can be 22 for SSH, 3389 for RDP, 3306 for MySQL, or any other service such as Instant Messenger (IM).
It is very important to note that, in order to do an NBA, a user has to activate a related web session first. In this session, a user will be authenticated, and if success, further communication with the PEP is done. Based on the authorization decision; the PEP talks to the ICS to update the firewall, and returns the final decision whether to permit or deny accessing a network service. If Permit, the user can physically access this service from the same IP. The following components represent these two types of access control:
3.6.1 ISAPI Filter

This filter is installed on the http://ncdcrx3.uccs.edu website (ISAPI website from now on), and is used to enforce all access for web resources. ISAPI has been designed to fire on secure access only (i.e. https), and it works as follows:
· The filter registers for SF_NOTIFY_AUTH_COMPLETE notification event, which is triggered when IIS completes the mutual authentication of a user. This way, we let IIS authenticate the user's PKC and in case the PKC is not valid, no further processing is required.
· If the authentication completes successfully, the filter intercepts the PKC, requested URL, web method, and specifies that the service type is "web".
· ISAPI builds an HTTP request containing the necessary attributes and submits it to the PEP.
· PEP does the actual authorization by querying AD, extracting roles from AC, requesting the PDP for an XACML decision, and then returning an XML formatted response to ISAPI.
· ISAPI parses the response; if the decision is "Permit", access is granted and the request proceeds to the actual web resource, otherwise, access is denied and the request is redirected to an error page.
The following figure help visualize this access type control

Figure 3.4: ISAPI filter entry point
3.6.2 Global.asax

This file lives in the root directory of the ASP.NET application that is running under http://ncdcrx4.uccs.edu website (asax website from now on). As mentioned before, Global.asax can work at session and application levels besides request level; therefore, it is used for managing web sessions. It implements Application_BeginRequest, Application_AcquireRequestState, Session_End, and Application_Error functions, and works as follows:
· When a request hits the asax website, ASP.NET recognizes the existence of Global.asax and calls the functions implemented in correspondence to related events.
· Application_BeginRequest is called when the request is just received. This means that IIS has already completed the authentication and validated the user's PKC.
· The PKC, URL, and client IP are intercepted at this point, and then the network service is determined based on the URL (SSH, MySQL, or RDP).
· In Application_AcquireRequestState, session info is available. So, Global.asax gets the session ID, builds a web request with other required attributes (i.e. IP address, Session ID, service name, and action), and submits it to the PEP requesting service open action.

· The PEP does the actual authorization process, and based on the decision, it communicates with the ICS to either open or close the firewall for the submitted attributes
· PEP returns an XML response with that decision to Global.asax; if "Permit", the user can access the actual network service, the web session is maintained, and the corresponding web page is refreshed automatically every 45 seconds, otherwise, Global.asax redirects the request to an error page.
· If a session ends, by either clicking the "End Session" button or closing the browser or the session timeout expires, ASP.NET calls Session_End function in which another web request is submitted to the PEP requesting service close.
The following diagram shows the Global.asax access control:

Figure 3.5: Global.asax access control

Chapter 4
ENforCE Implementation

A 4-machine test-bed has been built to simulate a real environment for the system. As described in Chapter 3, there was a LAN containing a Domain Controller (DC) and an IIS web server. In addition, a Linux-based machine running Fedora Core OS was configured as a gateway and firewall.
Many programming languages, software tools, and technologies have been used to get the system working.

4.1 Specification
4.1.1 Hardware
All four machines in the test-bed have the following specs:
· Dell Optiplex GX150.
· X86 Intel Pentium III 996 MHz.
· 512 MB RAM.
4.1.2 Operating System

· Gateway/Firewall: Linux Fedora Core 4 - 2.6.11-1.1369.
· Domain Controller and IIS: Microsoft Windows Server 2003 Enterprise Edition / SP1.

· Client: Microsoft Windows XP – SP2
4.1.3 Software and Packages
· IIS v6.0
· Microsoft ASP.NET v2.0 .50727
· Iptables V1.3.0

· Apache Tomcat 5.5.20
· J2SE 1.5.0_06 (JDK, JVM/JRE with JSSE)
· XACML 1.2
· AXIS-1.4 [52]
· IAIK-JCE 3.1 [51]
· IKVM.NET 0.26.0.1 [53]
· OpenSSL 0.9.7 [50]
· CMarkup "Lite" [54]
4.2 main components
4.2.1 ISAPI Filter

ISAPI filters live inside IIS and have the ability to process a request before IIS does. They have to be written using "unmanaged" C/C++, and they compile to Dynamic Linking Libraries (DLLs). I have used C++ with Microsoft Foundation Classes (MFC) to implement this filter. The main idea to implement ISAPI filters is that, you have to decide what events that you want the filter to fire on, because filters are event-driven components. Then, by registering the filter for these events, IIS will notify the filter each time one of those events occurs.
There are two methods that must be implemented for any filter:
· GetFilterVersion: register event notifications and add a description for the filter.
· HttpFilterProc: put the actual code that will be called on each event. Because there are many events that the filter may register in, a good way to implement this function is by using a SWITCH and specifying each event in a separate CASE.
The main functionality of this filter is to:
1) Intercept SSL requests and extract all required info: so we need to register for two events; the secure port (https) and when the authentication completes:
PVer->dwFlags = SF_NOTIFY_SECURE_PORT| SF_NOTIFY_AUTH_COMPLETE;

Then extract the user's PKC (subject field in specific), URL, and web method.
2) Build an HTTP request and submit it to the PEP: since ISAPI is used for web-based resource access, we need the following attributes:
a. Subject: the subject field extracted form the PKC.
b. URL: the full requested universal resource locater for the web resource.
c. Web method: (optionally) the request type (GET, POST …).
d. Service type: this attribute has a constant value = "web", so that the PEP can distinguish the type of service

A request example can be:
http://localhost:8080/sispep/servlets/sispep?subject= CN=Xiaobo Zhou, C=US, S=Colorado, L=Colorado Springs, O=UCCS, E=xZhou@sis.uccs.edu, OU=Computer Science & URL=https://ncdcrx3.uccs.edu/it/back.jpg & method=GET & service=web
An MFC class called CInternetSession is used to send the request.
3) Parse the XML response using CMarkup class, and extract the decision. If Permit, the filter allows the user's request to proceed, else, it redirects the request to an error page.
4.2.2 Global.asax

Global.asax lives in the root directory of the ASP.NET application. In terms of functionality, it almost does the same thing as ISAPI filter does, but the advantage over ISAPI is that, it can work at session-level and application-level besides request-level. If someone thinks to ask: so why don't you just use Global.asax in both cases? The answer is: ISAPI does not depend on ASP.NET; it is way more powerful and faster than Global.asax; it can see all requests to IIS regardless of the type or extension, while Global.asax works with aspx pages only.
The same concept of event-driven also applies here; we override the methods that we interested in their corresponding notifications. The script language used to implement this component is C#; as follows:
· In Application_BeginRequest: the method intercepts PKC's subject field, URL, and Client's IP from the web request and builds an HTTP request with two addition attributes:
a. Service type: the network service name (e.g. SSH, MySQL, or RDP).

b. Action: this can be 'open' or 'close' to tell the PEP to open or to close the firewall.
· In Application_AcquireRequestState: in this event notification, session info is available, so the method gets the Session ID, forms a request, and sends it to the PEP. The request here has additional attributes:
a. Session ID: to allow the PEP manage and track sessions.
b. Client IP: to tell the firewall what IP address should the service opened for.
c. Action: to tell the firewall whether to open or to close the service for this IP. In this function, the value of Action is 'open' because it reflects an attempt to access a service.
The C# class WebRequest is used to send a request to the PEP, and WebResponse class is used to read the response from PEP. Then, if the decision is Permit, an auto-refreshed aspx page will show up (refreshed every 45 seconds) to keep the service open, otherwise the user will be redirected to an error page.
· Finally, in Session_End: this method will be called if one of the following events has happened after successfully acquiring a session :
a. A user manually clicks a button on the asp page called "End Session".
b. The session timeout (60 seconds; the minimum value allowed by ASP.NET) has expired by either closing the browser or moving off to another page, so the page auto-refreshment is not running any more.
The request that is sent by this function is the same as the one in "Application_AcquireRequestState" with only one difference; the value of Action is "close".
One last thing to mention here is that, the type of network service is determined by the URL it self. Currently asax website has three links:
1) https://ncdcrx4.uccs.edu/netServices/MySQL/Globalasax.aspx for MySQL
2) https://ncdcrx4.uccs.edu/netServices/ssh/Globalasax.aspx for SSH.

3) And https://ncdcrx4.uccs.edu/netServices/rdp/Globalasax.aspx for RDP.

Server/Domain name

 Path
As we can see, the service name is in the second part of the path.
4.2.3 Iptables Control Service (ICS)

ICS is a JAVA server daemon running on the Linux Fedora Core machine. Its main job is to receive Iptables commands from the PEP and to update/modify Iptables rules accordingly. ICS listens on port 9876 which is protected by the firewall; so no one can connect to this port except the IIS machine. Java has been used to implement this component, in particular, Java Secure Socket Extension (JSSE) [55] [56]. The server socket in ICS is not a regular TCP socket; rather, it is a Secure Socket Layer (SSL) server socket. Since JDK 1.4x, JSSE is part of J2SE and available in three packages:
· javax.net.
· javax.net.ssl.

· javax.security.cert.
SSLServerSocket class is used for accepting secure connections. The difference between this class and normal stream sockets is that, it adds a layer of security protection over the underlying transport protocol (i.e. TCP) including:
· Integrity Protection. SSL protects against modification of messages.

· Authentication. In most modes, SSL provides peer authentication. Servers are usually authenticated, and clients can be authenticated as requested by servers.

· Confidentiality (Privacy Protection). SSL encrypts data being sent between client and server. This protects the confidentiality of data, so that passive attackers won't see sensitive data.

Authentication has been implemented to be mutual, so that client (i.e. PEP) and server (i.e. ICS) can authenticate each other. This is done by adding each one's PKC to the other side's trusted-certificates key store using Java keytool [57]. This way, even from the IIS machine, only the PEP, which has the ICS's PKC and has its PKC in the ICS's trusted keystore, can connect to ICS.
Finally, the method exec("command") in the Runtime class is used to execute ICS command.
4.2.4 PDP

PDP is an AXIS web service; this means that it accepts XML requests and returns XML responses, and in our case, they are of course XACML formatted. As mentioned before, the Sun's implementation of XACML is used. There are two important things in the implementation of PDP:
1) Create and object from PDP class, which has an evaluate() method used to do the actual evaluation of XACML requests (called Request-Contexts).
2) Tell the PDP object where to find XACML policies to use in the evaluation process. This is done by constructing a policyFinder object and initializing it with the policy modules we have.
It is very important to note that at the time of writing this thesis, Sun's implementation only supports Core RBAC. Therefore Sun's implementation has been extended to handle Hierarchical RBAC. Again, this is done by adding policy modules to the policyFinder object. The FilePolicyModule class is used to add RPS files. To add hierarchy support so that PolicySets defined in <PolicySetIdReference> tags can be found, we do the following:
· Create a class that extends PolicyFinderModule interface.
· Override findPolicy() method in such a way that enforces only one policy to apply to any XACML request. This was achieved by using the PolicySetId attribute in the actual PolicySet file (PPS files). Those IDs were enforced to start with ENFORCE:PPS: followed by the role description. For instance, the PPS PolicySetId for a Developer will be: ENFORCE:PPS:DeveloperPermissions.
· Add all PPS files to this module.

· Add the module to the policyFinder object.

4.2.5 PEP

PEP is a Java Servlet running under Tomcat; this means that it extends HttpServlet class and overrides its init, doGet, and doPost methods. It receives http requests from ISAPI filter and Global.asax, and returns XML responses containing the final decision. In terms of implementation, we can divide PEP to the following functionality:
1) Querying AD to get user's AC: Java Naming & Directory Interface (JNDI) is used to deal with multiple naming and directory services such as Active Directory. JNDI is available in two packages: javax.naming & javax.naming.directory. The following steps with code sample illustrate how to use these packages.
- Create a hashtable to hold all property values we need to initialize a directory context:

Hashtable env = new Hashtable();
- Populate the hashtable with key-value pairs such as the factory type, the LDAP URL, authentication method and credentials:

env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");

env.put(Context.PROVIDER_URL, "LDAP://10.0.0.10:389/dc=sis,dc=csnet,dc=uccs,dc=edu");

env.put(Context.SECURITY_AUTHENTICATION, "simple");

env.put(Context.SECURITY_PRINCIPAL, "cn=Administrator,cn=Users,dc=sis,dc=csnet,dc=uccs,dc=edu");

env.put(Context.SECURITY_CREDENTIALS,“password");
- Create a context from DirContext class and initialize it with the hashtable we just created:

DirContext ctx = new InitialDirContext(env);
- Define what AD's attributes we want to search by (the sAMAccountName is the concatenation of First & Last name of the user taken from PKC's Canonical Name (CN) field):

Attributes matchAttrs = new BasicAttributes(true);

matchAttrs.put(new BasicAttribute("sAMAccountName", “FirstLast”));

- Define what attributes we want to retrieve:

String[] retAttrs = {"attributeCertificateAttribute;binary"};

- Call the search method to get the result (if any) and close the connection:

NamingEnumeration result = ctx.search(“ou=test", matchAttrs, retAttrs);

ctx.close();

- Check if any result was found and get the Attribute Certificate:

if(result != null && result.hasMore()){

SearchResult sr = (SearchResult) result.next();

Attributes attrbs = sr.getAttributes();

Attribute acAttr = attrbs.get("attributeCertificateAttribute;binary");

}
2) Building XACML requests to get the authorization decision from PDP: XACML provides a class called RequestCtx that represents an XACML request including all required attributes in form of HashSets. As mentioned in Chapter 2, there are four elements used to construct the request: subject, resource, action, and environment. The last one is optional and rarely used, but for the first three, XACML defines Subject and Attribute classes with data types such as AnyURIAttribute and StringAttribute. This is simply done by creating a HashSet for each element and populating it with the element ID and value, e.g.,

resource = new HashSet();

StringAttribute resValue = new StringAttribute("theRequestedURL");

resource.add(new Attribute(new URI(EvaluationCtx.RESOURCE_ID),resValue));

Then we initialize the RequestCtx object with these HashSets:

 requestCtx = new RequestCtx(subjects, resource, action, env);

3) Managing Sessions and Enforcing active-sessions policy: this is a unique and advanced feature that allows PEP to enforce Conditional Active Session Access (CASA), which means that a junior role can only have access if there is an active session for its senior role for that service. To implement this, we have the following things:

a. A Hashtable: key-value pairs as described in 3.3.1 to maintain session IDs and all related info. Remember that this table is called "Active-Sessions Table".
b. A Java tree: a structure that looks like Figure 3.2 to represent role hierarchy internally. The Java class DefaultMutableTreeNode was used to build this tree, so that we can traverse its content and determine whether Role A is senior to Role B.
c. A policy reader engine: used to read the session policy file described in 3.3.1 and to represent the policy in this file internally so that we can evaluate CASA. The internal representation of this file is a Hashtable called "Session-Policy Table" (SPT) that has the service name as a KEY, and a Vector of [Senior : Junior] pairs as a VALUE. An entry of SPT may look like:
	SSH
	<CEO:DBAdmin, CFO:SalesMngr, ANY:Developer, ITMngr:DBAdmin>

We can read the following from this entry:
· A DBAdmin can ONLY access SSH if CEO and ITMngr have active sessions to SSH.
· A SalesMngr can ONLY access SSH if CFO has an active session to SSH.
· A Developer can ONLY access SSH if ANY of its Seniors has an active session to SSH.
The actual processing performed in this engine is:
· When an Http request comes to the PEP, the engine checks whether the requested network service exists in SPT.
· If not, no further processing is required because we don't have any policy for this service.
· If the service exists, check whether the Role in the request matches any Junior role in the corresponding vector of this service.
· If the role does not match any junior role in SPT, we stop; because there is no policy for this role in this service.

· If the role is found as a junior, the engine collects all senior roles for this junior.
· If the engine finds the key word ANY, it refers to the tree and AST to see if any person with the related senior role has an active session.
· If the word ANY not found, the engine checks that all required senior roles have active session (i.e. whether the required senior roles exist in AST for the service in question).
4) Connecting to ICS to update firewall rules as necessary. Finally, in case that the http request pertains to a network resource access, i.e. submitted from Global.asax, PEP will first check whether this request exists in Active-Sessions Table; the full entry should match including both table's key and value. If it does, PEP recognizes that this is a REFRESH not a new request, so it just ignores it. Otherwise, PEP will establish an SSL connection to ICS as described in 4.2.3 with only one difference that it uses SSLSocket as a client instead of SSLServerSocket. Then based on the decision it drawn from the previous three points/tests, it sends Iptables commands to update firewall rules accordingly.
4.2.6 Admin Tool

This tool is a stand-alone application used to manage PKI and PMI. It runs on the domain controller. Currently, the tool has the following features:
· PKI management:

· Create new Certificate Authorities (CAs).
· Load existing CAs.

· Create a single PKC.

· Create a bunch of PKCs based on a simple text file that has the required fields.
· Validate and revoke PKCs.

· Store users' PKCs in the Active Directory.
· PMI management:
· Create new Attribute Authorities (AAs).
· Load existing AAs.

· Create a single Attribute Certificate (AC).

· Create a bunch of ACs based on a text file.

· Validate and revoke ACs
· Store users' ACs in the Active Directory.

The required text file to generate certificates automatically has the following format:
	First name
	Last name
	Country
	State
	City
	Org.
	Org. Unit
	E-mail
	Role(s)
	Password (for p12)

Fields are separated by "&". Roles are separated by ":".
A Graphical User Interface (GUI) has been designed in C#. Figure4.1 and 4.2 show the GUI for PMI/PKI setup and certificate management.
· PKI/PMI setup:

[image: image10]
Figure 4.1: Admin tool PKI/PMI setup

· Cert Management:

[image: image11]

Figure 4.2: Admin tool Cert management

And AC validation report:

[image: image12]
Figure 4.3: AC validation report

In terms of implementation, C#, Java, and OpenSSL have been used to develop this tool as follows:
· OpenSSL is used for PKI: a compiled version (.exe) is called by the C# class "Process" :

Process p = new Process();

p.StartInfo.FileName = "openssl.exe";

p.StartInfo.Arguments = "req -x509 -newkey RSA -days 1825 -out \“filepath\" “;

p.Start();

· IAIK is used for PMI: a Java package that has an implementation for AC. Note that the package has been converted to a DLL file that can be references in any .NET project using IKVM.NET tool. The command to this is very simple:
· ikvmc –target:library iaikLib.jar // the output is iaikLib.dll

And to create an attribute certificate using IAIK package:

AttributeCertificate ac = new AttributeCertificate(); //create AC object
ac.setIssuer(aaIssuerSubjest);

 // set the issuer DN v2form

Name dn = new Name();

dn.addRDN(ObjectID.commonName, “Demo”);

dn.addRDN(ObjectID.country, “US”);

…

dn.addRDN(ObjectID.emailAddress, “address”);

GeneralName gn = new GeneralName(

GeneralName.directoryName, dn);

GeneralNames gns = new GeneralNames(gn);

Holder holder = new Holder();

holder.setEntityName(gns);

ac.setHolder(holder);

ac.setNotBeforeTime(nbt);

ac.setNotAfterTime(nat);

GeneralName roleInfo = new GeneralName

(GeneralName.uniformResourceIdentifier, “role1:role2”);

Role role = new Role(roleInfo);

ac.addAttribute(new Attribute(role));

ac.sign(alg, issuerPrvtKey); //sign the AC

· Active Directory Services Interface (ADSI) for AD communications: ADSI is the Microsoft provider (a set of Interfaces) to deal with AD. Two classes are available for this:
a. DirectoryEntry : encapsulates a node/object in the AD hierarchy. It is used for binding to objects, reading properties, and updating attributes. DirectoryEntry provides support for life-cycle management and navigation methods, including creating, deleting, renaming, and moving a child node.

b. DirectorySearcher : used to perform queries against the AD hierarchy. LDAP is the only system-supplied ADSI provider that supports searching. Note that a search of the AD hierarchy through DirectorySearcher returns an instance of SearchResult.
A sample code of querying/searching AD and getting AC using ADSI:

// define the LDAP path
DirectoryEntry entry = new DirectoryEntry ("LDAP://10.0.0.10/OU=test1,DC=sis, DC=csnet, DC=uccs, DC=edu");
// initialize the searcher
DirectorySearcher mySearcher = new DirectorySearcher(entry);
// specify the value and location of the attribute we want to search by.

mySearcher.Filter = ("(&(objectClass=user)
(objectCategory=person)(sAMAccountName="+logon+"))");
SearchResult result = mySearcher.FindOne(); // retrieve search result
// get AC from the result if exists

if (result != null) {

 DirectoryEntry myEnt = result.GetDirectoryEntry();

 myEnt.Properties["attributeCertificateAttribute"].Add(ac);

 myEnt.CommitChanges();

 myEnt.Close();

}

4.2.7 XACML policy files highlights
Note: This section is NOT intended to fully explain RBAC and XACML; reader should read section 2.3 and 2.4 to get the necessary background.
In short, for each defined Role in the system we create two XACML policy files: Role Policy Set (RPS) and Permission Policy Set (PPS). In PPS we specify what permissions the role has; in our case, we basically specify the resources that the role is allowed to access, then we reference permissions that the role should inherit from other roles, i.e. other PPSs. While in RPS, we specify the role name as the Target's subject, and reference the PPS that was defined for this role.
· PPS example for CFO role:
<?xml version="1.0" encoding="UTF-8"?>

<PolicySet
PolicySetId="ENFORCE:PPS:CFOPermissions"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:permit-overrides">

<Target>

<Subjects> <AnySubject/> </Subjects>

<Resources> <AnyResource/> </Resources>

<Actions> <AnyAction/> </Actions>

</Target>

<Policy PolicyId="PolicyForCFORole"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides">

<Target>

<Subjects> <AnySubject/> </Subjects>

<Resources> <AnyResource/> </Resources>

<Actions> <AnyAction/> </Actions>

</Target>

<Rule RuleId="FinanceManagementRule" Effect="Permit">

<Target>

<Subjects> <AnySubject/> </Subjects>

<Resources>

<Resource>

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:regexp-string-match">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
https://ncdcrx3.uccs.edu/financial/finMgmt.aspx
</AttributeValue>

</ResourceMatch>

</Resource>

</Resources>

<Actions> <AnyAction/> </Actions>

</Target>

</Rule>

</Policy>

<PolicySetIdReference>ENFORCE:PPS:SalesMgrPermissions</PolicySetIdReference>

<PolicySetIdReference>ENFORCE:PPS:AccMgrPermissions</PolicySetIdReference>

 </PolicySet>
Note the following:
· The root element is a PolicySet (one PolicySet per document).

· The PolicySetId attribute value MUST start with "ENFORCE:PPS" .
· The Target of the PolicySet and Policy has no constraints.
· For each Rule, we set Subject to "AnySubject" and specify the Resource and optionally in our case the Action.
· The type of the URL attribute in Resource is String, so that we can use regular expression functions to mach URLs.
· After finishing the definition of the policy, we use PolicySetIdReference to add all PPSs for other roles that CFO should inherit.

· RPS example for CFO role
<?xml version="1.0" encoding="UTF-8"?>

<PolicySet
PolicySetId="RPS:CFO:Role"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:permit-overrides">

<Target>

<Subjects>

<Subject>

<SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<SubjectAttributeDesignator
DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="role"/>

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

CFO
</AttributeValue>

</SubjectMatch>

</Subject>

</Subjects>

<Resources> <AnyResource/> </Resources>

<Actions> <AnyAction/> </Actions>

</Target>

<PolicySetIdReference>ENFORCE:PPS:CFOPermissions</PolicySetIdReference>

</PolicySet>

Note the following:
· There is also one PolicySet element.
· We MUST define the Target's Subject element to specify the Role attribute by using SubjectAttributeDesignator element.
· After finishing the specifications of the Target, we put one and ONLY one PolicySetIdReference to associate this RPS with the corresponding PPS.
· The value inside "ENFORCE:PPS:CFOPermissions" is EXACTLY the same as the value in the PolicySetId of the PPS's PolicySet, it is case sensitive.

Chapter 5
Performance Analysis

As mentioned in Chapter 3, a fake company called "SecuForce" has been created on the test-bed with different types of resources to mimic some real life scenarios. SecuForce has 12 roles, 15 web resources, and three network services. Roles and the resources they can access shown in Table 3.1. Role hierarchy was described in Figure 3.2. The web resources are:
Enforce Admin Tool
Finance Management
Projects Controller
Resource Management
Password Reset
Sales Write
Posting Orders
Sales Read
View Posted Orders
MySQL Web Interface
VLAN Management
Progress Reports Submission
Read Engineer Updates
The Public Directory
The available network services are SSH, RDP, and MySQL. The nine scenarios listed in Section 3.1 have been tested and used to collect system performance results.

5.1 Web-based resources

 This type of resources is accessed through ISAPI filter, so in short:
· The request is submitted to PEP.
· PEP gets the user's AC from active directory.
· PEP consults PDP for an XACML authorization decision.

· PEP returns the decision to ISAPI filter.
In Table 5.1 only the performance results of 6 web resources are shown because others are very close. Time unit is in milliseconds.
	Resource
	Retrieve AC from AD
	PDP decision
	Total request time

	Finance Mgmnt
	5.4750
	3.0345
	10.3476

	Sales Write
	6.2864
	4.3872
	13.7203

	Posting orders
	6.9820
	4.92345
	13.8433

	View orders
	5.1734
	4.1093
	11.7390

	Report submission
	6.2138
	3.0387
	12.3348

	Engineer updates
	5.0237
	3.3321
	11.2375

Table 5.1: Web-based resource performance results
Note that the total request time does not represent the sum of AC retrieval and PDP decision; it includes the time to send http request to PEP and the time for PEP to send the decision back to ISAPI filter. This also applies to the total request time in tables below.
5.2 Network-based resources
This type is accessed through Global.asax and includes two cases:

1) A request with a new session:
a. The request is submitted to PEP.

b. PEP gets user's AC from AD.
c. PEP gets the XACML decision from PDP.
d. PEP checks if there is any CASA policy.
e. PEP communicates with ICS to update firewall rules.
2) A refresh for an existing session:
a. The request is submitted to PEP.
b. PEP gets user's AC from AD.
c. PEP gets the XACML decision from PDP.

d. PEP checks CASA policy.
Note that, after checking CASA policy, PEP recognizes that this request exists in the active-sessions table and concludes that it is a refresh to an existing active session, so no need to connect to ICS and change Iptables rules.
Results for Case 1 were as follows: (time in ms)

	Resource
	Retrieve AC from AD
	PDP decision
	CASA decision
	Firewall update
	Total request time

	SSH
	5.8730
	3.8264
	2.3654
	15.5093
	29.4374

	RDP
	5.7639
	4.9276
	3.1093
	17.1204
	32.2841

	MySQL
	6.1927
	3.1043
	2.5831
	14.7627
	30.6392

Table 5.2: Network-based resource performance results (new session)
Results for Case 2 were as follows: (time in ms)

	Resource
	Retrieve AC from AD
	PDP decision
	CASA decision
	Total request time

	SSH
	6.8093
	4.3298
	3.9485
	20.5912

	RDP
	7.7602
	3.8749
	2.2037
	20.5382

	MySQL
	6.3175
	3.7829
	2.5582
	19.7045

Table 5.3: Network-based resource performance results (refresh active session).
5.3 Performance analysis
Generally speaking, the above results are considered really excellent. The largest total request time was about 33 ms. For the sake of comparison, the following table represents some performance results for the Secure Information Sharing (SIS) system [1]:
[image: image13.emf]
Table 5.4: SIS performance results
It is very obvious that there is a huge difference in performance; the LDAP access in SIS is about 51 ms, while the total request time in ENforCE, which includes pulling AC from active directory, getting an XACML decision from PDP, checking CASA policy, and updating Iptables firewall, is about 33 ms!
By observing the tables above, we can conclude that the web-based resource access time is the best. This is due to:
· This type of access is processed by an ISAPI filter which is a DLL file works in the same memory space as IIS and written in native C/C++ language.
· There is no session management involved in this access type.
· There is no communication with Iptables firewall because web resources are managed by IIS itself.

On the other hand, network-based resource access takes about twice as much time as web resource access does. This can be referred to:
· Global.asax is used for this access type which, of course, does not compete with ISAPI performance and usually is slower. It is written in C#, so needs to be compiled and run in the .NET framework.
· Two additional steps take place here; checking CASA policy and communicating with ICS.
In between, we have results of refreshing active sessions showing a good improvement over regular access of network-based resources. Namely, by maintaining an active-session table, the PEP can distinguish between a "brand-new" request and a request from a refresh of an existing session. Therefore, PEP recognizes that there is no need to talk to the firewall. Finally, I would like to mention three important points:
1) The system has been designed to dynamically respond to any changes. PDP checks XACML policy files on each request, so if policy changes (permissions granted or revoked), it is automatically reflected and enforced without any additional steps. Same thing applies to changing attribute certificates. This follows the principle of complete mediation.
2) In the case of refreshing an active session, PEP keeps track of the decision. So, if policy is changed while there is an active session, it takes effect on the next refreshment. (Means that it takes 45 seconds at most).
3) It was noticed that the very first request in general takes much more time than that of following requests (from 90 – 110 ms). By "first request" I mean: when one of the server machines reboots, or when IIS/Tomcat are restarted for some reason. The reason that the first request pays the cost is that, many initialization stuff are done in this first access including:

a. IIS loads ISAPI filters

b. ASP.NET compiles and loads components such as Global.asax and HttpModules.

c. Tomcat loads its web applications (i.e. PEP Servlet).
d. PEP establishes an SSL connection with ICS.
Therefore, it is normal to get this overhead or delay. The good thing is that, it's only for one request and the system admin can do this request if a server has to be restarted.

Chapter 6
Problems and Lessons Learned

In this chapter we will discuss some problems that may occur, some components that should be designed and implemented in better ways, and lessons that have been learned during this research.

6.1 Admin tool

One thing that must be changed is the Admin tool's implementation. By "change" I mean: to re-implement the Admin tool in a better way. Currently, four different languages/packages are used in this tool:
· C# for the GUI and ADSI functionality.
· OpenSSL (compiled exe originally written in C++) for PKI (CA, PKC, CRL, …)
· IAIK Java-based package for PMI (AA and AC)
· IKVM.NET for converting IAIK to work under the .NET framework.

In term of performance, this tool maybe has the worst performance ever; the OpenSSL exe program is started and terminated on every PKC creation, and basically, very different things are "enforced" to work together. The reason why I did it this way is simply because I could not find all the functionality I needed to implement in one language at that time, March 2006.
The good news is that, there is a powerful open-source package called "BouncyCastle" [58] that provides almost all needed APIs in both languages: Java and C#. In fact, Java has the main and more matured APIs (release 1.36), while C#'s API 1.0 was released in January 2007.
6.2 CASA policy
As mentioned in Chapters 3 and 4, conditional active-session-access policy has been added to enforce fine grained access based on senior role's sessions. There are two java structures used to do this:
· Hashtable java class used to maintain all required session information.
· DefaultMutableTreeNode java class to represent roles hierarchy as a tree.
Although I don't consider this as a "problem", but in case that this system is used for heavily traffic production environment in which thousands of requests hit the server, it's better to replace the Hashtable with a database table (e.g. MySQL). A Hashtable may have a performance advantage over a database, but using a database will provide more stability and better ability to handle larger entries/records.
As for the tree, currently it is hard-coded for representing the sample role hierarchy shown in Figure 3.2.
So, to keep the system flexible and dynamic, the tree representing role hierarchy should be built and initialized dynamically.
One way I can think about to implement this is by using a file with a pre-defined structure (e.g. XML file) to define role hierarchy, and then read this file to build the tree.
6.3 Network-based resource access

When users want to access a network service, they should use a special web page (i.e. through Global.asax) to authenticate themselves and to activate a session that is used to open this service in the firewall for the user's IP address. And to keep the session active, that web page is automatically refreshed every 45 seconds.
This design works well, but someone may say: there is additional overhead because of the auto refreshment. Actually, no; refresh time was set to 45 seconds for demonstration only and to show that a policy can take effect within as little as 45 s. Therefore, this time can be set to whatever amount of time (e.g. an hour), in addition to changing the corresponding session timeout also.
To improve this design anyway, it is better to "centralize" the access in one place. One way to do this is by using a proxy w/ firewall that should be able to authenticate users and to protect network resources. I am not sure whether there is an open source proxy that can be customized to fit in the system, or a proxy should be implemented from scratch. Further research is needed here.
6.4 Lessons Learned
· It is not a good idea to use too many packages with different programming languages in one component. Usually this affects the performance and it is not guarantee that they work together smoothly.
· At the vary beginning, I tried to use a package called "CryptLib" [59] to create Attribute Certificates (ACs), but it didn't work so I don't recommend using this package.
· I tried to use an HttpModule for intercepting SSL requests, but it turned out that it is triggered by aspx pages and can handle request-level events only. On the other hand, ISAPI filters and Global.asax were very good choices to go for:
· ISAPI is very fast and works with any type of files.
· Global.asax has the ability to work with session and application levels.
· Don't start implementing something unless you have spent sufficient time to research about it and to make sure that it is not already exist. For example, I was about to develop a language to implement RBAC model and policy stuff, and by the way it was XML based, then I found out that there is a big amount of effort in this area, and Sun has already implemented XACML.
· Generally speaking, it is really a good thing that a developer does not limit himself/herself to a certain programming language or technology. In fact, when I started working on this thesis, I only knew Java and some security related things, so it took me some time to teach myself the required stuff to get this work done. Now anyone who reads this report can see that Java, C#, ASP.NET, JSP, C/C++, XACML, Iptables firewall, X509 certificates, ISAPI filters, OpenSSL, Tomcat, IIS, and Active Directory have been used. It wasn't easy though!

Chapter 7
Future Work and Conclusion
7.1 Future Work

A future work for this thesis may include:

· Extend the system to work in a multi-agency environment.
· Allow the system to support any network service dynamically; currently only three services are supported (SSH, MySQL, and RDP).
· Develop more services that can take advantage of the existing RBAC architecture. For instance:
· RBAC E-Voting: users can vote based on their roles.

· RBAC Instant Messenger: users can chat based on their roles.

· RBAC E-Mail: users can send e-mails based on their roles.

· RBAC XXX and so on…

· Add time constraints to the policy to avoid insider attack.

· Support more Operating systems (Mac, Solaris …).
· Upgrade the system's servers to Window Server "Longhorn" with IIS 7.0 and Fedora Core 6.
· Improve the Admin tool to initialize and modify Active Directory, and to be able to generate XACML policies.
· Support Wireless access.
7.2 Conclusion

I have developed a generic engine for controlling emergent hierarchical role-based access, called "ENforCE", that runs under Windows environment. ENforCE has the ability to guard any service or resource on the network by providing secure access to resources through X509 certificates and the Role Based Access Control (RBAC) model, so users can access information and services according to their Roles in the organization. In addition, ENforCE provides fine grained access control by the new concept of Conditional Active-Session Access (CASA) policy; this advanced feature allows us to add a policy states that: A Junior Role can access some resources ONLY if its Senior Role has an active session for this service. An admin tool has been also developed to simplify the management of PKI and PMI.

A four-machine test-bed has been built to simulate real life scenarios. About 15 web-based resources and 3 network-based resources have been deployed in the test-bed to help test and collect information. Nine different scenarios have been done, and results have shown that ENforCE has robust and secure access to all types of resources, and in terms of performance, it demonstrates excellent results.
In short, the main contributions of this thesis include:
· Provide a robust architecture for small-mid size and potentially large-scale companies to address accessing sensitive resources securely according to hierarchical role-based access policies.
· Extend XACML to handle the Hierarchical Role-Based Access Control (HRBAC) model.
· Add a new concept of secure access in which a Senior Role can restrict its Junior Role's access using active sessions.

· Enhance IIS 6.0 with two components, ENforCE-ISAPI filter and ENforCE-Global.asax.
· Simplify PKI and PMI management. Therefore, reducing management cost and errors.

Appendix A:
Installation & Configuration of ENforCE

Assuming that a test-bed has been built as shown in figure 3.3, three machines need to be configured to run the ENforCE system:
· Install Fedora Core on one machine
· Install Windows Server 2003 on the other two machines.

1) Fedora Core Machine:

For Fedora Core machine, we need to do three simple things:
1) Install JRE 1.5+:
· The official Fedora Core 4 Release Notes state: "Fedora Core 4 users are advised NOT to use the Java RPM provided by Sun. It contains Provides that conflict with names used in packages provided as part of Fedora Core 4. Because of this, Sun Java might disappear from an installed system during package upgrade operations. Fedora Core 4 users should use either the RPM from jpackage.org or manually install the Sun Java tar ball into /opt. Sun Java 1.5+ is recommended for stability purposes." (JRE update 11 is used here, if you use different update just replace number 11 in the file name with whatever update number you have).
· Go to http://java.sun.com/javase/downloads/index_jdk5.jsp and click the download button next to JRE 5.0, accept the License Agreement, and choose "Linux self-extracting file" (NOT the rpm one).
· Save this file to the Home directory (/home), and as root type: mv *.bin /opt
· Hit enter, and type: cd /opt

· Hit enter, and type: chmod +x *-linux-i586.bin
· Hit enter, and type: ./*.bin ,
· Hit enter and hold the enter key down until the "yes/no" line appears, type yes and hit enter.
· When the installation completes, type: rm *.bin , hit enter, type "Y" and hit enter.
· Type: ln –s /opt/jre1.5.0_11/plugin/i386/ns7/libjavaplugin_oji.so (space) /usr/lib/mozilla/plugins/libjavaplugin_oji.so
· Type: gedit /etc/profile.d/java.sh
· In gedit add these two lines:

export J2RE_HOME=/opt/jre1.5.0_11

export PATH=$J2RE_HOME/bin:$PATH

· Be sure to enter a carriage return after these lines. Click on the "save" icon in gedit and exit gedit. In the terminal type:
source /etc/profile.d/java.sh
· Hit enter, and type: which java
· Make sure that you see "/opt/jre1.5.0_11/bin/java"

· Type: /usr/sbin/alternatives --install /usr/bin/java java /opt/jre1.5.0_11/bin/java 2
· Hit enter and type /usr/sbin/alternatives –config java and hit enter
· Type "2" and hit enter
· Type: /usr/sbin/alternatives –display java. Make sure that you see:

· "java – status is manual."
· "link currently points to /opt/jre1.5.0_11/bin/java"
· Done. Java is ready.
2) Available in the "ENforCE Package"; copy the file (ENforCEfw.sh) to "/root":
· As a root, type: ./ENforCEfw.sh to run the script.
3) In the "ENforCE Package" go to "ICS" directory and copy the folder "enforce" to "/root", and then run the Iptables Control Services (ICS) java class:
· To run it temporarily type: java enforce/iptables/IptableService
· To run it as a daemon so if you logout, it still running type:

nohup java –Xrs enforce/iptables/IptableService &
The fedora core machine is ready.

2) Domain Controller Machine:

Now one of the two Windows machines will be the domain controller. This is done by installing Active Directory (AD) as follows:

Install AD:

- Click the Start button; click Run, type DCPROMO, and then click OK.

- When the Active Directory Installation Wizard appears, click Next to begin the installation.

- After reviewing the Operating System Compatibility information, click Next.

- Select Domain controller for a new domain (default), and then click Next.

- Select Domain in a new forest (default), and then click Next.

- For Full DNS name, type sis.csnet.uccs.edu, and then click Next.

- Click Next to accept the default Domain NetBIOS name of SIS.
- On the Database and Log Folders screen, point the Active Directory Log Folder to L:\Windows\NTDS, and then click Next to continue.

- Leave the default folder location for Shared System Volume, and then click Next.

- On the DNS Registration Diagnostics screen, click Install and configure the DNS server on this computer. - - Click Next to continue.

- Select Permissions compatible only with Windows 2000 or Windows Server 2003 (default), and then click Next.

- Type password for Restore Mode Password and Confirm password, and then click Next to continue.

- A summary of the Active Directory installation options will show up. Click Next to start the installation of Active Directory. If prompted, insert the Windows Server 2003 installation CD.
- Click OK. Click Finish once the Active Directory Installation Wizard is finished.

- Click Restart Now to reboot the computer.

After installing AD, we need to populate it with an Organizational Unit (OU) and user accounts:
Creating OU:
· Click the Start button, point to All Programs, point to Administrative Tools, and then click Active Directory Users and Computers.

· Click the + next to sis.csnet.uccs.edu to expand it.
· In the left pane, right-click sis.csnet.uccs.edu, point to New, and then click Organizational Unit.

· Type "test" in the name box, and then click OK.
Creating a user account:
· Simply, Right-click test, point to New, and then click User.

· Type Edward for the first name and Chow for the last name.
· Type EdwardChow for the User logon name.
· Note that: it is VERY IMPORTANT that the logon name is a concatenation of first and last names; the PEP uses this format to query AD.
· Click Next and type any#pass#word for Password and Confirm password, and then click Next to continue.

· Click Finish. A user account is ready.
· Repeat the same steps to create other user accounts so that you will end up with something like:
 [image: image14.png]=] 3

(G e scion yon wrcow teb

[ISETE

«-E@E s e[XEF

B R aftvds

' Actve Dvectry Usars and Compuer
Saved Queris

= 8 scsnetccs.edu

it

Computers

@ Domain Controlers
Forsgnsecurtyprncls
Lostandound

05 Quotas

Program Dt
System

Users

test 12 objects

Name [Tpe [Description

€ s Woody User Accountant

£ il ketschmer User Engineer

€ erian Burnett User o

£ edward chon User Network Adnin
£ 3m Tidwel User Sales Manager
£ 3ule Brewster User Accounting Manager
£ ate Talman User IT Manager

€ Leviaray User Salesman

£ 0sama khalee! User Developer

€ Pam zalabk User =23

£ Terry Boult User Project Manager
£ wiscbo zhou User Database Adrin

Active Directory Populace for this test-bed is:

	OU
	Full Name
	Login Name

	test
	Pam Zalabak
	PamZalabak

	
	Brian Burnett
	BrianBurnett

	
	Terry Boult
	TerryBoult

	
	Kate Tallman
	KateTallman

	
	Jim Tidwell
	JimTidwell

	
	Julie Brewster
	JulieBrewster

	
	Edward Chow
	EdwardChow

	
	Xiaobo Zhou
	XiaoboZhou

	
	Osama Khaleel
	OsamaKhaleel

	
	Bill Kretschmer
	BillKretschmer

	
	Amie Woody
	AmieWoody

	
	Levi Gray
	LeviGray

Most of the AD installation steps were from Microsoft TechNet, so for more information about this go to: http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/directory/activedirectory/stepbystep/domcntrl.mspx
The domain controller w/AD is ready.

3) IIS Machine:

The last machine is also Windows server 2003, but we will configure it as an IIS web server and add all the required components and tools. (most of work will be on this machine!!)

Install IIS 6.0:
1. Click Start > Control Panel > Add or Remove Programs.

2. In Add or Remove Programs, click Add/Remove Windows Components.

3. Under Components, click on Application Server (but do NOT select the check box) and press on the Details button.

4. In the Application Server window click to select IIS check box and click Ok.

5. Click Next, and after the installation is complete click Finish.
Install .NET framework 2.0:

Now, we need to install the .NET framework (to run .NET applications) and SDK (to develop .NET application). Note that if you don't want to develop applications on the IIS machine, you don't have to install the SDK. However, if you do, .NET Framework redistributable Package MUST be installed first.
* Simply, download the "dotnetfx.exe" (.NET framework 2.0 x86) from: http://www.microsoft.com/downloads/details.aspx?familyid=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en and double click on it to install.
* Then download the "setup.exe" (.NET Framework 2.0 SDK x86) from:
http://www.microsoft.com/downloads/details.aspx?familyid=FE6F2099-B7B4-4F47-A244-C96D69C35DEC&displaylang=en and double click on it to install.
Java related stuff:
* First we need JRE 1.5+. Get "jre-1_5_0_11-windows-i586-p.exe" from: http://java.sun.com/javase/downloads/index_jdk5.jsp
And double click it install. I recommend installing it on "C:\java\" folder.
* Then set the "JAVA_HOME" environment variable. One way to do this is:
· Right-click on "My Computer", and select properties.

· Select the "Advanced" tap. And click "Environment Variables".
· Under "System variables" click "New".
· Type: JAVA_HOME in the "variable name" field
· Type: the path of JRE home (e.g. C:\java\jre1.5.0_11) in the "variable value" field.
* Next download Tomcat 5.5.xx from (the Windows service installer):
http://apache.mirrors.tds.net/tomcat/tomcat-5/v5.5.23/bin/apache-tomcat-5.5.23.exe
And double click on it to install. There are three things to be aware of:
· I recommend installing it on "C:\".
· Choose port 8080 which is the default.

· Install it as a "Service", so that Tomcat will start automatically when Windows starts.
* Then get Apache AXIS "axis-bin-1_4.zip" from: http://www.apache.org/dist/ws/axis/1_4/
You can save it anywhere, but again I recommend saving it to "C:\".

* Go to "C:\axis1_4\webapps\" and copy the folder "axis" to "C:\Apache\Tomcat5.5\webapps\" directory.
* open the file "C:\Apache\Tomcat5.5\wepapps\axis\WEB-INF\server-config.wsdd", and add the following XML code to the services section (anywhere with the services).
<service name="sispdp" provider="java:RPC">

 <parameter name="allowedMethods" value="evaluateRequestString"/>

 <parameter name="className" value="edu.uccs.sis.SISPolicyDecisionPoint"/>

</service>

* The following files/folders are located in the ENforCE Package:
· Go to "For_axis" directory and copy the "edu" folder to:

"C:\Apache\Tomcat 5.5\webapps\axis\WEB-INF\classes\".
· Go to "For_tomcat" directory and copy "sispep" folder to: "C:\Apache\Tomcat 5.5\webapps\".
· Go to "Axis_jars" directory and copy the jar files to:

"C:\Apache\Tomcat 5.5\webapps\axis\WEB-INF\lib\"
· Go to "Tomcat_jars" directory and copy the jar files to: " C:\Apache\Tomcat 5.5\shared\lib\"
IIS configuration:
Before starting configuration, we need to copy the following folders from the ENforCE Package and place them on "C:\": (directly on C)
· ISAPI_web
· ASAX_net

· ENFORCE

· Certs

Remember that you should have assigned the IIS machine with 2 IP addresses: 10.0.0.11 and 10.0.0.13 because there will be two websites: isapi site and asax site. Note that you can create two new sites or use the default website and only create a second one.
* To create a new website: (isapi site)
· As an Administrator, Click Start, point to Settings, Control Panel, and click Internet Services Manager.
· Click Action, point to New, and then click Web Site.
· After the Web Site Creation Wizard starts, click Next.
· Type "Enforce ISAPI Site" as a description for the Web site.
· Select "10.0.0.11" IP address to use for the site.
· Type 80 as the TCP port number to publish the site on.
· Click Next.
· Click Browse to select the "C:\ISAPI_web" folder, and then click Next.
· Select the "Read" and "Run Scripts" access permissions, and then click Next.
· Click Finish.
* Create the second website: (asax site)

· Click Start, point to Settings, Control Panel, and click Internet Services Manager.

· Click Action, point to New, and then click Web Site.
· After the Web Site Creation Wizard starts, click Next.
· Type "Enforce ASAX Site" as a description for the Web site.
· Select "10.0.0.13" IP address to use for the site.
· Type 80 as the TCP port number to publish the site on.
· Click Next.
· Click Browse to select the "C:\ASAX_net" folder, and then click Next.
· Select the "Read" and "Run Scripts" access permissions, and then click Next.
· Click Finish.
* Next, we will create a virtual directory for each sub-folder we have in "ISAPI_web":
· Right-click the "Enforce ISAPI site", point to New, and then click Virtual Directory. The Virtual Directory Creation Wizard appears, click Next.
· In the Alias box, type "eng", and Click Next.

· In the Path box, browse to the physical directory "C:\ISAPI_web\eng".
· Click Next.

· Under Allow the following permissions, check "read" and "run script" boxes, and then click Next.
· Click Finish. The virtual directory is created below "Enforce ISAPI site".

Repeat the same steps for other directories with changing Aliases and Paths as follows:
· "financial" for "C:\ISAPI_web\financial".
· "it" for "C:\ISAPI_web\it".

· "mgmt" for "C:\ISAPI_web\mgmt".

· "order" for "C:\ISAPI_web\order".

· "pub" for "C:\ISAPI_web\pub".

· "rbacError" for "C:\ISAPI_web\rbacError".
· "sales" for "C:\ISAPI_web\sales".
And we need two virtual directories in "Enforce ASAX site":
· Right-click the "Enforce ASAX site", point to New, and then click Virtual Directory. The Virtual Directory Creation Wizard appears, click Next.

· In the Alias box, type "netServices" (case sensitive), and Click Next.

· In the Path box, browse to the physical directory "C:\ASAX_net\NetSrvs".

· Click Next.

· Under Allow the following permissions, check "read" and "run script" boxes, and then click Next.
· Click Finish. The virtual directory is created below "Enforce ASAX site".
* Repeat the same steps to add "rbacError" for "C:\ISAPI_web\rbacError". (Yes, "rbacError" is the same for both).
* Before we continue to configure SSL related stuff, we need to generate PKCs and ACs. In the ENforCE Package, copy the "Admin Tool" folder to the domain controller machine (anywhere), go to "sis release" and double click on "sis.exe" to start the tool. Note that in the "Admin Tool" folder there are a CA and an AA demos, in addition, there is a "Certs" folder that contains p12 files for all users and servers. So, I'll use these demos to create certs.
- Go to "SIS SETUP" tab, and click "Load an Existing CA" button.
- In the folders tree, Browse to "SISCADemo" folder, select it, and click OK.
- A "Loaded successfully!" message will appear, click OK.
- Click "Issue many DCs based on a textfile" button.
- Browse and select the text file containing users' info (e.g. \Admin Tool\usersInfo2.txt).
- And that's it. PKCs will be created in "\SISCADemo\IssuedCertificates\" and stored automatically in the AD. Plus, p12 files for these certs will be in "SISCADemo\P12s\" folder.
Then, we need to issue two certs individually for the IIS server (one for each site):
· Click the "Issue single Digital Certificate" button.
· Fill the form with server's info. The two important things here are:
a. The "Common Name" must be the same as the server domain name (ncdcrx3.uccs.edu).
b. The "PrivateKey Password" will be used in the p12 file, so make sure you remember it because we will use it later to install the cert.
· Click "Enter Info" button.
* Repeat the same steps with using "ncdcrx4.uccs.edu" as the Common Name for the other cert.
Similarly, we will create ACs:
· In the same tab, click "Load as existing Attribute Authority" button.
· Select the "AADemo" folder.
· A "Loaded successfully!" message will appear, click OK.

· Click "Issue many ACs based on a textfile" button.

· Browse and select the text file containing users' info (e.g. \Admin Tool\userInfo2.txt).
· You are done. ACs have been generated and stored in the AD.
If you want to create new CA and AA, simply click "Create a new. .." instead of "Load an existing…"
Now, assumed that the two server p12 files have been copied to the IIS machine, we will install them and configure SSL.
* To install a cert: (remember, this is on IIS machine)
- Click Start then Run, and type "mmc" (without the quotes of course).
- A console will show up. Click "File" and select "Add/Remove snap-in".
- On the "Standalone" tab Click "Add"

- In the list box, select "Certificates", and click "Add".
- Choose the "Computer account" option, and click "Next".

- Select "Local Computer" and click "Finish".
- Click "Close" on the last popup, and "OK" on the Add/Remove popup.
- "Certificates (Local Computer)" will appear in the console tree under "console root".
- Click the "+" sign next to "Certificates (Local computer)" then the "+" next to "Trusted Root Certification Authority".
- Right-click on the "Certificates" folder under "Trusted Root CA", select "All tasks" then "import…".

- A "Certificate import Wizard" will show up, click "Next".

- Click "Browse", and select the "CA_cert.cer" file (i.e. the CA cert file name).

- Click "Next".

- Make sure that the selected certificated store is "Trusted root CA", click "Next", Finish, and OK.
- Click the "+" sign next to "Personal".
- Right-click on the "Certificates" folder under "Personal",
- Select "All tasks" then click "import…".
- A "Certificate import Wizard" will show up, click "Next".
- Click Browse, change the "File of Types" drop-down list to ".p12", and select the "ncdcrx3.uccs.edu.p12" file.
- Click "Next".
- Type the p12 password (e.g. "passme" in this demo), and click "Next".

- Select "Personal", Click "Next" then "Finish", and then "OK".
* Repeat the last 8 steps to install "ncdcrx4.uccs.edu" cert.
* Now we have the certs installed, we can configure SSL as follows:
· In IIS Manager, expand the local computer, and then expand the Web Sites folder.

· Right-click the "Enforce ISAPI Site" and then click Properties.

· Select the Directory Security tab, and under Secure communications, click Server Certificate.
· In the Web Server Certificate Wizard, click Assign an existing certificate.

· Follow the steps in the Web Server Certificate Wizard, and choose the "ncdcrx3.uccs.edu" certificate.
· Repeat the same steps to install "ncdcrx4.uccs.edu" certificate on the "Enforce ASAX Site".
* For each virtual directory under both sites, enable SSL by doing the following:
· Right-click the virtual directory (e.g. eng, financial, sales, …) and then click Properties.
· Select the Directory Security tab, and under Secure communications, click Edit.
· Check "Require secure cannel (SSL)".
· Under "client certificates" select "Require client certificate".
* Finally, install the ISAPI filter:

· In the Enforce Package, copy "Geforce.dll" on the IIS machine (anywhere).
· Right-click the "Enforce ISAPI Site" and then click Properties.

· Select the ISAPI Filters tab, and then click Add.
· Type a filter name (e.g. Enforce_Filter).

· Click "Browse" and choose "Geforce.dll" file, click OK, and then OK.
· To activate the filter, restart the WWW service as follows:

· Click Start, select Run, and type "cmd".
· Type: "net stop w3svc".
· Then type: "net start w3svc".

Appendix B:
ENforCE Demo
Note: to do this demo you need to install users' p12 files (their digital certificates) on the machine's browser that you want to do the demo from (in our case, it is IE 7). To install a certificate:
· Open IE7, click Tools, and then click Internet Options.
· Select the Content tab.
· Under "Certificates" click Certificates button.

· In the "Personal" tab, click import.
· A certificate import wizard will show up, click Next.

· Click Browse to select the p12 file. (If necessary, change the "Files of Type" filter list to .p12).
· Click Next and type the Password. (It is the password specified in the text file used to generate users' certificates. In this demo, it was 222222222).
· Click Next, make sure that the "certificate store" is Personal.
· Click Next, Finish, and then OK.

Repeat the same steps to install other certificates.

This demo consists of 9 scenarios as follows:
1) To demonstrate that only users with proper roles can have access. (Write example)
Step a: Showing that an Accounting Manager can post orders

· Let us try to access: https://ncdcrx3.uccs.edu/financial/finWriteTest.aspx
· The web server requests the client digital certificate. This triggers the browser to pop up a window for selecting a certificate that I already preinstalled.

· Let us choose “Julie” who has the accounting manager role. Therefore, she should be granted access.

· Yes! We've granted access.

Step b: Showing that users without proper roles will be rejected.

· To avoid cert caching in IE, let us close the IE and start another instance.

· Let us try to access: https://ncdcrx3.uccs.edu/financial/finWriteTest.aspx again.

· This time let us choose Amie, who is an accountant, and has read permissions only as we will see in scenario2. She should get access denied.

· Yes! She has been denied.

2) To demonstrate that only users with proper roles can have access. (Read example).
Step a: Showing that an accountant can view/read orders originally posted by the accounting manager:

· Let’s go to https://ncdcrx3.uccs.edu/financial/viewOrders.aspx

· choose Amie, who has the role of Accountant. she should be granted access.

· yes! We've got in.

· Let’s try to enter some order number now.

Step b. To show that users without the proper role should be rejected:

· Go to https://ncdcrx3.uccs.edu/financial/viewOrders.aspx again

· This time, choose Bill, who is an Engineer... should be rejected.

· Yes! Bill got rejected to view orders.

3) To demonstrate that a senior role inherits its junior role's permissions.

Step a:

· Go to the Progress-Reports Submission page

· Let’s choose Osama, who is a Developer, and usually wants to keep his seniors updated.

· We can upload any file for this demo.

Step b:

· Now, to show inheritance: a Developer has two seniors, Project Manager and CEO. So we can choose anyone of them to prove that

· We go to https://ncdcrx3.uccs.edu/eng/submitProgress.aspx again

· And then choose Terry as a Project Manager

· Yes! He's got access. Note that, Terry does NOT have the above resource in his permission policy file; he has a reference to the developer's policy set only.

4) To demonstrate that we can have a public directory that any employee can access.

Steps:

· Go to The Public Directory

· Choose any role you want.

· And we should get access!

· Important: note that the extension of the page is html, not ASP.NET page, showing the POWER of ISAPI filters that work for any file type!!!

5) To demonstrate that ENforCE has the ability to control "non-web" access by dynamically updating the system's firewall.
Steps:

· We should first open a "web" session for the SSH service: SSH

· Note that: this session is used to make the required Firewall modifications. it is not the actual SSH access.
After activating this "web" session for SSH, a user can physically access SSH on port 22.

· Let's choose Brian who is CFO and has the permission to access SSH.

· Then, let's try to access SSH again with Pam who is a CEO, senior role to CFO, to prove inheritance.

· Note that this is a different website that does NOT have any ISAPI filters.

· Instead, it depends on Global.asax application file to manage sessions.

6) To demonstrate a conditional access with a CERTAIN senior role.

Steps:

· Let's try to open a session for the RDP service: Remote Desktop.

· And choose Osama who is a Developer and can access RDP only if his Project Manager (Terry) has an active session.

· So, he should get (DENY); since Terry doest not have any active session right now.

· Now, let's have Terry open a session for RDP: Remote Desktop.

· And have Osama try to access: Remote Desktop again.

· YES!! He got it.

· Want to see more fun...
· Let Terry end his session, and guess what happens to Osama's connection :-)

7) To demonstrate a conditional access with ANY senior role.

Steps:

· Let's try to open a session for the MySQL service: MySQL Database.

· And choose Amie who is an Accountant, and can access MySQL if ANY of her senior roles (AccMgr, CFO, or CEO) has an active session.

· So, she should get (DENY); because none of them has any active sessions right now.

· Now, let's have Brian (CFO) open a session for MySQL: MySQL Database.

· Then, have Amie try to access: MySQL again.

· YES!! She got it.

8) To demonstrate a conditional access with N-Senior-Roles.

Steps:

· Let's try to open a session for the SSH service: SSH.

· And choose Zhou who is a DB-Admin and can access SSH only if TWO seniors (ITMgr and CEO) have active sessions.

· So, he should get (DENY); since none of them has an active session right now.

· Now, let's have Kate (IT Manager) open a session for: SSH.

· And have Zhou try to access: SSH again.

· He should get (DENY) one more time; because we still need another senior!!

· Pam (CEO) will open a session for SSH

· Zhou should be able to access SSH now.

· YES!! He got it.

9) To show some of the Admin tool's features.

Steps:

· Assume that Edward got fired :-)

· Let’s first make sure that Edward (NT Admin) can access the VLAN Management page.

· Now, we will use the admin tool for this task.

· Select the “certificate management” tap.

· Click on “revoke AC” button.

· Enter the user’s logon name (EdwardChow).

· And that’s that, his AC has been revoked.

· Now, let’s make sure that Edward doesn’t have access any more by visiting any resource.

· Say, Edward has got hired back, and promoted to IT Manager!!!

· So we will issue him a new AC with the new role.

· Now, he should be able to access the Password Reset page

· Next, we can preview Edward's AC.

· Choose the “Certificate Management” tap.

· Click “Check AC” button and enter the user’s logon name (EdwardChow).

· A report will pop up showing the AC info.

References:

[1] C. Edward Chow and Ganesh Godavari, "Secure Information Sharing Using Attribute Certificates and Role Based Access Control", Proceedings of SAM 2005, June 2005.

[2] Chadwick, D. W., and Otenko, A. The permis x.509 role based privilege management infrastructure. Future Gener. Comput. Syst. 19, 2 (2003), 277_289.

[3] Ravi S. Sandhu, "Future Directions in Role-Based Access Control Models", Proceedings of the International Workshop on Information Assurance in Computer Networks: Methods, Models, and Architectures for Network Security, pages 22-28, 2001

[4] Javier Lopez, Antonio Mana, J. J. O. J. M. T., and Yague, M. I. Integrating pmi services in corba applications. Comput. Stand. Interfaces 25, 4 (2003), 391_409.

[5] Thompson, M. R., Essiari, A., and Mudumbai, S. Certi_cate-based authorization policy in a pki environment. ACM Trans. Inf. Syst. Secur. 6, 4 (2003), 566_588.

[6] Joon S. Park, Keith P. Costello, Teresa M. Neven, Josh A. Diosomito, "A composite rbac approach for large, complex organizations", Proceedings of the ninth ACM symposium on Access control models and technologies, pages 163-172, 2004

[7] Longhua Zhang, Gail-Joon Ahn, Bei-Tseng Chu, "A role-based delegation framework for healthcare information systems", Proceedings of the seventh ACM symposium on Access control models and technologies, Pages: 125 - 134, 2002

[8] OASIS - Extensible Access Control Markup Language (XACML), http://www.oasis-open.org/committees/download.php/915/cs-xacml-schema-policy-01.xsd , 2004

[9] RFC3281 – An internet attribute certificate profile for authorization http://www.ietf.org/rfc/rfc3281.txt

[10] Gail-Joon Ahn, Badrinath Mohan, "Secure Information Sharing Using Role-based Delegation", International Conference on Information Technology: Coding and Computing, 2004.

[11] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.Youman. Role-based Access Control Models. IEEE Computer, 29(2): 38–47, February 1996.

[12] PERMIS. http://www.permis.org/, 2004.

[13] RBAC: http://csrc.nist.gov/rbac/, Last update: 5 Feb 07.

[14] Internet X.509 Public Key Infrastructure Authority Information Access Certificate Revocation List (CRL) Extension (RFC 4325) (http://www.ietf.org/rfc/rfc4325.txt), December 2005.

[15] NIST Computer Security Resource Center, Public Key Infrastructure, http://csrc.nist.gov/pki/publickey.html , Nov 2005.

[16] Core and hierarchical role based access control (RBAC) profile of XACML v2.0

OASIS Standard, 1 February 2005.

[17] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, "Proposed NIST Standard for Role-Based Access Control (core and Hierarchical)", ACM Transactions on Information and System Security, Vol. 4, No. 3, August 2001.

[18] Microsoft Windows server 2003 Active Directory, http://www.microsoft.com/windowsserver2003/technologies/directory/activedirectory/default.mspx

[19] Active Directory, from Wikipedia, http://en.wikipedia.org/wiki/Active_Directory .

[20] Microsoft TechNet http://technet2.microsoft.com/windowsserver/en/technologies/featured/ad/default.mspx
[21] Iptables Tutorial 1.1.19 – firewall, http://www.faqs.org/docs/iptables/index.html

[22] J. S. Park, K. P. Costello, T. M. Neven, J. A. Diosomito, "A Composite RBAC Approach for Large, Complex Organizations" ACM 1-58113-872-5/04/0006 June, 2004.

[23] JONATHAN KEIRRE ADAMS, BASHEER N. BRISTOW, "Access Control for Hierarchical Joint-Tenancy", WSEAS Transactions on Computers, June 2006, Issue 6,
Volume 5, p. 1313-1318
[24] Internet X509, Additional LDAP Schema for PKIs and PMIs, http://tools.ietf.org/id/draft-ietf-pkix-ldap-schema-01.txt, 8 September 2000.

[25] OASIS eXtensible Access Control Markup Language (XACML), http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml, 1 February 2005.

[26] Sun's XACML implementation, http://sunxacml.sourceforge.net/ , 21 June 2006.

[27] Netfilter/Iptables project, http://www.netfilter.org/projects/iptables/index.html .

[28] Iptables Tutorial 1.2.2, http://iptables-tutorial.frozentux.net/iptables-tutorial.html, 2006.
[29] Markus Lorch, David Adams, Dennis Kafura, Madhu Koneni, Anand Rathi, Sumit Shah “The PRIMA System for Privilege Management, Authorization and Enforcement in Grid Environments”, communicated to the 4th Ind. Workshop on Grid Computing – Grid 2003.

[30] Marcus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura, Sumit Shah, "First experiences using XACML for Access Control in Distributed Systems", ACM workshop on XML security, October 2003.

[31] IIS ISAPI filters,http://msdn.microsoft.com/library/default.asp?url=/library/en-us/iissdk/html/22e3fbfb-1c31-41d7-9dc4-efa83f813521.asp, overview, structure, and event notifications.

[32] ISAPI overview from Wikipedia, http://en.wikipedia.org/wiki/ISAPI .

[33] .Net framework general reference "Global.asax syntax", http://msdn2.microsoft.com/en-us/library/2027ewzw.aspx .

[34] Working with ASP.NET Global.asax file, http://builder.com.com/5100-6371-5771721.html , May 2005.
[35] PKC overview http://en.wikipedia.org/wiki/Public_key_certificate .
[36] X509 standard in Wikipedia http://en.wikipedia.org/wiki/X.509 .

[37] Sampermane, G., Naldurg, P., & Campbell, R, Access Control for Active Spaces, In Proceedings of the 18th Annual Computer Security Applications Conference, 2002.
[38] Sandhu, R., Lattice Based Access Controls, Computer, 26, 11 (Nov. 1993), 1993.

[39] JOSHI, J. B. D.,AREF, W. G.,GHAFOOR, A., AND SPAFFORD, E.H. 2001a. Security models for web-based applications. Commun. ACM, 44, 2, Feb. 38–44.

[40] R. Sandhu, D.F. Ferraiolo, D, R. Kuhn, "The NIST Model for Role Based Access Control: Towards a Unified Standard," Proceedings, 5th ACM Workshop on Role Based Access Control, July 26-27, 2000.

[41] Suns' XACML Programmers Guide 1.2, http://sunxacml.sourceforge.net/guide.html , July 2004.

[42] XACML 2.0 Core: eXtensible Access Control Markup Language (XACML) Version 2.0, http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf, Feb 2005.

[43] IIS 6.0 technical overview http://download.microsoft.com/download/8/a/7/8a700c68-d1af-4c8d-b11e-5f974636a7dc/IISOverview.doc, March 2005.
[44] SSH Communications Security, http://www.ssh.com/ .

[45] Secure Shell overview, http://en.wikipedia.org/wiki/Ssh .

[46] MySQL official website, http://www.MySQL.com/ .
[47] Remote Desktop Protocol, http://www.microsoft.com/technet/prodtechnol/Win2KTS/evaluate/featfunc/rdpfperf.mspx .
[48] Java Servlet Technology, http://java.sun.com/products/servlet/docs.html .

[49] Apache Tomcat, http://tomcat.apache.org/ .
[50] OpenSSL binaries, http://www.stunnel.org/download/binaries.html .

[51] IAIK – JCE package, http://jce.iaik.tugraz.at/ .
[52] Apache AXIS "open source implementation of SOAP", http://ws.apache.org/axis/ .

[53] IKVM.NET "An implementation of Java for .NET framework", http://www.ikvm.net/ .
[54] CMarkup Lite "C++ MFC Class for parsing and building XML", http://www.codeproject.com/soap/markupclass.asp .
[55] Java Secure Socket Extension (JSSE), http://java.sun.com/products/jsse/ .
[56] JSSE reference guide for JDK 5.0, http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html .
[57] Java keytool and keystore, http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html .
[58] The BouncyCastle package, http://www.bouncycastle.org/ .

[59] CryptLib package, http://www.cs.auckland.ac.nz/~pgut001/cryptlib/ .
Figure 2.2: Core RBAC [40]

�

�

Figure 2.3: Hierarchical RBAC [40]

Figure 2.5: DSD RBAC [40]

Access requester

6. Permit/Deny Access attributes	

4. Fetch policies

attributes	

5. XACML response attributes	

�

3. Collect attributes	

1. Request Access	

Resources

Policies

Attribute Source

PDP

PEP

Main switch

128.198.162.53 128.198.162.52 128.198.162.51

128.198.162.50

10.0.0.1

FedoraCore4 Gateway/Firewall

Local switch

10.0.0.10

10.0.0.12

10.0.0.11

10.0.0.13

Win2003 DC

Win2003 IIS

Windows XP

IIS

ISAPI

1) Web request

IIS Authentication

Protected web resources

 Policy Enforcement

Point

2) Http request with attributes

5) XML response with decision

7) XML response with decision

2) Http request with attributes

Policy Enforcement

Point

Protected Network resources

IIS Authentication

1) Request a web

session

IIS

ASP.NET Application

Global.asax

Policy

Decision

Point

A4/B4) Get

Decision

B8) Network- resource

Access

6) Permit/Deny access

4) Get Decision

4) Get decision

8) Physically access the services

6) Open/Close commands

ICS

FC4 machine (Firewall)

PDP

B6) Open or Close service commands

Iptables Control Service

ASP.NET Application

Global.asax

FC4 machine (Firewall)

Policy

Decision

Point

 B7) XML response

B2) Http request

Policy Enforcement Point

Protected Network resources

IIS Authentication

 A1/B1) User Request

Active Directory

�

ISAPI

Protected web resources

A5) XML response

A2) Http request

Session policy source

Active Directory

A3/ B3) Get User's AC

�

RPS

PPS

Domain Controller

Domain Controller

3) Get User's AC

AD

DC

Figure 2.3: Hierarchical RBAC [40]

Session policy source

3) Get User's AC

5) Check session policy

Set user Roles

Set Validity Period

Set Holder's Subject Field

B5) Check

Session policy

S

I

G

N

A

T

U

R

E

Extension

Subject Public Key

Validity Period

Issuer

Subject

Signature ID

Serial Number

Version

S

I

G

N

A

T

U

R

E

Extension

Attributes

Validity Period

Issuer

Holder

Signature ID

Serial Number

Version

PAGE
10

