
Storage Optimization for a Peer-to-Peer Video-on-Demand
Network ∗

Jagadeesh M. Dyaberi, Karthik Kannan, and Vijay S. Pai
Purdue University

West Lafayette, IN, USA
jdyaberi@purdue.edu, kkarthik@purdue.edu, vpai@purdue.edu

ABSTRACT
This paper explores requirements for efficient pre-seeding of video-
on-demand (VoD) movie data onto numerous customer set-top
boxes in a cable ISP environment. The pre-seeded content will
then be distributed to other set-top boxes in the same cable com-
munity using a peer-to-peer (P2P) network protocol such as BitTor-
rent. The challenges and solutions required for P2P VoD provided
by a fixed provider such as a cable company are fundamentally dif-
ferent from those seen in traditional P2P networks or client-server
VoD solutions.

Our work pre-positions data into set-top boxes using a mathe-
matical programming algorithm. The objective of the algorithm
is to minimize uplink traffic, given a popularity model for var-
ious pieces of content and information about storage and band-
width capacity constraints at the customer nodes. Given the com-
plex non-linear nature of P2P interactions, these mathematical pro-
grams are solved using non-linear optimization approaches. Us-
ing a BitTorrent-like peer-to-peer data delivery system, we show
through extensive simulations that our mathematical model for pre-
seeding data based on object popularity and node bandwidth avail-
ability leads to noticeably greater reductions in uplink traffic and
VoD server load than a weighted-random pre-seeding scheme that
only considers object popularity.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems–Distributed Applications; C.2.5 [Computer-
Communication Networks]: Local and Wide-Area Networks–
Internet; H.5.1 [Multimedia Information Systems]: Video

General Terms
Performance, Experimentation, Design, Measurements, Algo-
rithms
∗This work is supported in part by the National Science Foundation
under Grant Nos. CCF-0532448 and CCF-0621457, and by AT&T
Labs under a VURI award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys’10, February 22–23, 2010, Phoenix, Arizona, USA.
Copyright 2010 ACM 978-1-60558-914-5/10/02 ...$10.00.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nov-08 Dec-08 Jan-09 Feb-09 Mar-09 Apr-09 May-09 Jun-09 Jul-09

R
el

at
iv

e
gr

ow
th

 o
f s

ub
sc

rib
er

s

Month

Figure 1: Relative growth in VoD subscribers from November
2008 to July 2009

Keywords
Video-on-Demand, Multimedia Streaming, BitTorrent, Peer-to-
Peer, Experimental Systems, Nonlinear Programming

1. INTRODUCTION
As systems such as voice, video, and data communication merge

onto a single IP-network delivery platform, users are likely to ben-
efit with a greater number of choices and more content control [10].
Consequently, cable companies have made significant investments
in systems that seek to deliver high-bandwidth digital content (e.g.,
Video-On-Demand service for full length, high-definition movies)
to consumers. Users have responded with an ever-increasing num-
ber of IPTV/cable VoD subscriptions and views.

Apart from IPTV and cable VoD, VoD on the Internet has also
grown. Several companies like Amazon, Hulu, and YouTube have
expanded their offerings significantly in the past year [1, 3, 4]. In
this paper, we focus solely on IPTV/cable-based VoD.

Figure 1 shows the relative increase in US IPTV subscribers for
a major IPTV provider from November 2008 to July 2009, with the
month of November considered as the base month. Data shows an
average subscriber increase of 7.5% per month. Figure 2 shows the
number of VoD requests made per-day by all the IPTV customers
between February 2009 to July 20091. This Figure shows a growth
in VoD requests over the five-month period. There are approxi-
mately 75% more requests made per-day in July than in February.

1Both graphs show relative numbers or no numbers on the y-axis.
We cannot provide the absolute numbers on the y-axis due to a
confidentiality agreement with the content provider.

59

N
u

m
b

e
r

 o
f

 V
o

D

re

q
u

e
st

s
N

u
m

b
e

r
 o

f
 V

o
D

re

q
u

e
st

s

Figure 2: Number of VoD requests per day from February 2009
to July 2009

The vertical columns represent the number of VoD requests made
per day, with spikes on weekends. The line with markers on the
graph represents the average number of daily VoD requests for each
week. The increase in subscribers and VoD requests and content
pose huge challenges to IPTV providers as they seek to meet the
required QoS.

IPTV service providers currently employ a unicast data delivery
model. Figure 3 illustrates this data delivery model. All the VoD
data is streamed from the regional or national-level video hubs to
the requesting viewers. Viewers in this environment use a set-top
box (STB) provided by their service provider to access IPTV con-
tent. The local community switch (DSLAM) is connected to re-
gional video hub servers via an uplink connection, which currently
has a bandwidth of around 1 Gbps [10]. This uplink becomes a
bottleneck in determining the number of concurrent viewers when
using unicast data delivery. The unicast delivery model is not eas-
ily scalable to thousands of clients. Further, the introduction of
High-Definition (HD) format further strains the uplink, as it re-
quires three times more bandwidth than Standard-Definition (SD).

One solution to meet the increasing demand for VoD content is
to increase the bandwidth of the uplink between the community
and the server hubs. This infrastructure upgrade is very expensive
and could result in underutilization of link bandwidth if there are
only a few concurrent active viewers at any time. A feasible so-
lution to reduce uplink load and extend the network is to use P2P
communication among set-top boxes in a community. Although
set-top boxes can store viewer-selected content through resources
such as DVR (Digital Video Recorder), they are essentially largely
under control of the system provider. Thus, the system provider
may use their resources as a way of extending the capabilities of
the network. IPTV providers can reserve part of the DVR capacity
and also the upload bandwidth from a household for their purpose
of extending the network. This approach could exploit any unused
bandwidth in the community network and any unused capacity in
the user set-top boxes.

The other likely bottleneck that can occur at the regional server
hubs is the server disk bandwidth. Although disk arrays can help to
improve aggregate bandwidth, their effective throughput may nev-
ertheless be limited by disk allocation and workload characteristics.
Hence to satisfy the real-time constraint of video data delivery, ser-
vice providers may have to employ several servers to meet the re-
quest demand, incurring substantial costs for deployment, power,
cooling, and space. By instead offloading data transfer to the com-
munity P2P network, the disk bandwidth problem is also alleviated.

Figure 3: IPTV architecture

Previous work by Choe et al., called Toast, has modified the Bit-
Torrent protocol to enable peers (set-top boxes) to stream data to
each other, while still using the origin VoD servers to provide data
chunks when no peer could provide the data in a timely fashion
[11]. Toast modified the BitTorrent piece selection policy and eval-
uated various peering systems including one in which peers con-
tinue to serve data even after they have completed viewing their
streaming media. The experimental evaluation of Toast showed
that the P2P system can offload up to 70-90% of data demand from
the origin server for a single media stream, thus validating the use
of P2P communication for streaming. However, this model was
not applied to a full VoD library, nor can it be trivially extended as
such.

This paper demonstrates challenges and solutions to deploying
P2P data delivery for video content delivery of a large number of
movies in a fixed-provider environment. First, porting a traditional
P2P model into a environment that is largely centrally-controlled
would underutilize the available resources. If end nodes are en-
tirely responsible for making decisions about which content to store
based on their own on-demand viewing, the system will not be in-
creasing its capabilities whenever end nodes are idle. This is a sub-
stantial issue in situations like home VoD that typically see idleness
for most of the day followed by a brief period of high activity in the
evening and early night. Instead, the system should try to preload
desired data onto the set-top boxes and thus make all set-top boxes
active participants in the P2P network even if they are not consum-
ing P2P resources. Figure 4 shows the average number of requests
from STB’s during the entire 24 hour period [9]. We observe a low-
load period between 2–8 AM where the graph reaches its lowest
points. This provides the service provider an excellent opportunity
to pre-seed data onto set-top boxes with minimal disruption to the
viewers.

Second, the issue of set-top box capacity becomes a concern
when considering all the content available from the provider (which
can reach thousands of movies). The total capacity among all the
set-top boxes in a community is far less than the capacity needed
to store all the movies, so only a subset of the total content can
be stored in the community. Further, if the movies are encoded in
High-Definition, capacity becomes an even greater constraint.

Third, bandwidth is closely tied with capacity as both must be
considered jointly to maximize overall streaming efficiency. This

60

1000

1500

2000

2500
N

u
m

b
e

r
o

f
re

q
u

e
st

s

0

500

1000

1500

2000

2500

1
:0

0

2
:0

0

3
:0

0

4
:0

0

5
:0

0

6
:0

0

7
:0

0

8
:0

0

9
:0

0

1
0

:0
0

1
1

:0
0

1
2

:0
0

1
3

:0
0

1
4

:0
0

1
5

:0
0

1
6

:0
0

1
7

:0
0

1
8

:0
0

1
9

:0
0

2
0

:0
0

2
1

:0
0

2
2

:0
0

2
3

:0
0

0
:0

0

N
u

m
b

e
r

o
f

re
q

u
e

st
s

Time

Figure 4: Average number of VoD requests during a 24-hour
period [9]

is a concern as all networks currently exhibit substantial asymme-
try between the uplink and downlink bitrates at any given end node
(typically about an order of magnitude). If each end node has an
uplink of 1 Mbps, it would require six sources simultaneously con-
tributing data to satisfy a single request for a HD-quality streaming
movie encoded at 6 Mbps; each of these sources would be fully sat-
urating its uplink. This issue now relates back to capacity, because
offloading a substantial amount of streaming traffic onto the P2P
network requires that enough copies of the data exist in the net-
work to account for the asymmetry in uplink and downlink rates.
This requires replication, which reduces the effective aggregate ca-
pacity in the network and makes the subset of content that can be
stored in the network an even smaller fraction of the total.

Because the P2P network can only store a subset of the data con-
tent available, any preloading solution must intelligently choose
which data to load and replicate. An effective decision would re-
quire an understanding of the popularity of different pieces of con-
tent, as the greatest benefits would arise from replicating the most
popular content. At the same time, the high demand for these most
popular videos would require extensive replication to be able to
support as many simultaneous requests as are likely to arrive.

This paper presents and prototypes intelligent capacity alloca-
tion policies using mathematical models that seek to maximize the
streaming availability and efficiency within the community net-
work. Putting together capacity and bandwidth constraints, the
mathematical models are used to build up a “presence matrix”
of pieces of content by carefully considering capacity constraints
(making sure that no given node is assigned too much data) and
bandwidth constraints (making sure that no node’s uplink is overly
strained by heavily replicating the most popular pieces of content
and distributing the popular content across different sets of nodes
so that no node is particularly more demanded than others) while
optimizing for an objective function. The current objective func-
tion is to minimize the aggregate bandwidth demand at the servers.
Real-time data delivery is guaranteed by building this on top of the
Toast infrastructure, which falls back to the origin server if no peer
can deliver the requested data within the expected real-time con-
straint [11]. Experimental results obtained via simulations show
that using our intelligent capacity allocation, we are able to reduce
central server load by 50%. The optimized allocation scheme out-
performs a popularity-aware heuristic solution (weighted random
allocation). Optimized allocation is also quite robust in the face of
unexpected popularity shifts.

The rest of the paper is structured as follows: Section 2 pro-

vides background on IPTV and the BitTorrent protocol. Section 3
describes our system setup and the optimization algorithm. Exper-
iments and results are discussed in Section 4 while related work is
described in Section 5. Section 6 concludes the paper.

2. BACKGROUND

2.1 IPTV characteristics
In an IPTV environment, customers are provided with a set-top

box (STB) to connect to the network and be able to access the IPTV
service. Almost all STBs have an in-built hard-drive to use the STB
as a DVR. Hard drive capacity of the STBs exceed 100 GB and
with storage getting cheaper every year, this number will increase
rapidly as time progresses [19]. These STBs are always on, since
customers generally do not power down the STBs by unplugging
the power cord from the electrical wall socket. Thus there is no
“churn” in the system and the STB resources are always readily
available. IPTV service providers must decide how best to exploit
the resources provided by these STBs to enhance their services,
thus maintaining consumer satisfication and profitability. Hence it
is important to study user viewing behavior to help decide the right
content that needs to be pre-seeded on the STBs. To this end, we
analyzed the viewing habits of users all who are served by the same
regional hub. Characteristics influencing viewing behavior include
recency of content and certain external factors like the occurrence
of major events.

One of the interesting trends we observe from our analysis of
actual IPTV logs is that between any two consecutive weeks, the
titles of videos viewed overlap by as much as 47%. Although the
number of views of these overlapped videos reduces in the second
week, they still make up significant numbers. Analysis shows that
recently introduced content (for example, movies added to the con-
tent library at the beginning of the week) are 52% more likely to
be viewed than movies that have been part of the content library
for a longer time. We observed that six of the ten most popular
movies (including all of the top five) for the week were added to
the content library at the beginning of the week. Amazon’s VoD
service also showed the same trend where the seven of the top ten
movies were recently introduced content [1]. Apart from movies,
TV shows for which episodes were aired in the previous week tend
to be viewed more on the day after or in the following week. Hence
if a certain community is consistently viewing a particular TV show
in high numbers, then it is easily predictable that they will continue
to watch the same show and mostly the recently aired episodes.

External factors like the death of a celebrity or the winning of
major awards can also contribute to viewing patterns. For exam-
ple, after the death of Michael Jackson, videos featuring the artist
increased in popularity. CNET UK reported that the week after
Michael Jackson’s death, 25 of the top 30 music videos on iTunes
belonged to Michael Jackson [2]. In the previous week, there were
no videos of the artist among the top sales. The other example of
the influence of an external factor is the wining of major awards
by a movie. Thus in the week following the Oscar awards, award
winning movies are far likely to be viewed than movies that are not.
Our data analysis showed that viewing of Vicky Cristina Barcelona,
a previously less popular movie, increased by 600% in the week
following its receiving an Oscar award.

2.2 BitTorrent
BitTorrent has become the most popular file distribution proto-

col on the Internet [13]. This is primarily due to its efficiency and
speed in transferring files. Previous P2P systems usually consisted
primarily of a method to search for and locate files shared on the

61

network. Once found, a peer simply requested the file from another
peer, which transferred it using HTTP or a similar protocol. These
systems were primarily differentiated by their methods of locating
content, but were all similar with respect to their transfer methods.
BitTorrent on the other hand ignores the search problem. Instead,
it relies on web sites or other common distribution methods to dis-
tribute small files called torrent files (sometimes called “dot tor-
rent” files, due to their filename extension), each of which is essen-
tially a descriptor of a file or group of files to be downloaded. Each
file to be distributed has its own torrent file, and the group of clients
downloading a particular torrent is called a swarm. Each swarm is
independent and self-contained, but individual clients may partic-
ipate in more than one swarm at a time. The swarm is managed
by a simple network server called a tracker, which is responsible
for keeping track of all clients in the swarm, and informing clients
about each other. The tracker does not upload or download any file
data. Clients that have the entire file are called seeds and download-
ing clients which do not yet have the whole file are called peers or
leechers. Peers become seeds once they have the whole file, and
there are no distinctions between the seeds. (In particular, there are
no differences between the original seed run by the original distrib-
utor of the file and other clients that have become seeds and are
still participating in the swarm.) In most cases, once they have the
entire file, clients will continue to participate as seeds until the user
closes them.

One of the major innovations in the BitTorrent approach is that
each file is split into a number of small pieces, and these pieces are
transferred out of order. This means that peers that have different
pieces of the file can exchange them, and that a peer can download
different pieces from several other peers at once. In fact, since
transfers are made at a granularity even smaller than the piece size,
even a single piece can be downloaded from several peers at once.
This can greatly increase the speed at which a file is transferred
compared to simply downloading all of it from a single peer.

3. SYSTEM DESIGN

3.1 Overview
Our system is similar to Toast: a hybrid of a modified BitTorrent

and a simple unicast VoD system [11]. We extend Toast to support
multiple streams instead of a single movie stream. Each client can
be pre-seeded with content up to the storage capacity limit of the
client. The decision to pre-seed clients with content is based on
an optimization formulation as described in the next section. The
actual pre-seeding can be done during a daily low-load phases as
shown in Figure 4. When data is actually demanded, the VoD server
ensures there is no loss in quality-of-service by streaming pieces to
clients if the P2P network cannot deliver the data at all or within the
desired time. As in Toast, the goal of the P2P network is to offload
data traffic from the servers.

Unlike standard BitTorrent, this streaming-oriented P2P sys-
tem has an “in-order” piece-picking policy, by which clients fetch
pieces from their peers in the order that the movie is being viewed.
Similar to Toast, the piece-picking policy implements the feature
of “giving up” and not selecting pieces that are too close to the cur-
rent stream position to download on time. For example, if a missing
piece that represents 4 seconds of video will be needed in less than
4 seconds, and the remote client’s upload rate is less than the video
bitrate, then the download cannot finish before the piece is needed,
so the picker will skip it and choose a piece further ahead. The
amount of this lookahead is estimated based on the length of the
piece, the client’s upload rate, and the video bitrate.

Since our clients (set-top boxes) are under the control of the con-

tent provider, we assume that users cannot modify the set-top box
to either change the contents or unfairly download content while
not uploading to other clients. No client is a free-loader, and all
of them contribute fairly to the system. We thus further modify
the client uploading protocol by removing the choking/unchoking
mechanism, tit-for-tat fairness algorithm, and “rarest first” piece-
picking policy, as all of these are designed to improve aggregate
behavior of the swarm by increasing the likelihood of reciprocal
sharing.

3.2 Pre-seeding Optimization Formulation
As mentioned, the clients are pre-seeded with content to assist

in VoD streaming. However it is important to do intelligent pre-
seeding so that we maximize the requests served by the P2P net-
work and reduce the load on the uplink and the central server. The
decision on what content is pre-seeded at which client is deter-
mined by a non-liner programming formulation. The formulation
seeks to minimize the number of requests that are served by the
regional server, thus ensuring optimal usage of the P2P network.
The Non-Linear Programming (NLP) formulation is motivated by
previous work done by Tawarmalani et.al, who analyzed object al-
location in a network of caches for sharing web content [32].

We model the setup as having N equally sized objects and M
caches. Let i ∈ {1, ..., N} represent the individual objects and
j ∈ {1, ...M} represent the individual peers (the terms nodes,
peers, STBs, and clients are used interchangeably in this paper)
in the system. We assume that the peers have identical capacities,
each with the ability to hold C pre-seeded objects. We also assume
that requests arrive at the system at rate of λ, following a Poisson
process. A given request is for object i with an exogenous prob-
ability Pi. This represents the expected popularity of the object
compared to the other available objects.

There are two stages involved in this problem context. The ob-
jects are pre-seeded in the first stage. They are then distributed in
the second stage depending on the type of request. In this paper, we
do not seek to find the optimal allocation across both stages. Such
optimization would involve determining the optimal delivery mech-
anism subject to the optimal allocation, which in turn depends on
the delivery mechanism. Instead, we fix the second stage as adopt-
ing a fairly straightforward mechanism and focus on the optimal
pre-seeding problem in the first.

Our decision variable in the first stage is Xij , which is an indi-
cator to represent that object i is pre-seeded at node j. Our second
stage mechanism is as follows. If an object is requested at a par-
ticular node, the object search is executed in a sequential manner,
beginning with the node indexed 1. If one of the searched peers
holds the object (i.e., Xij = 1) and is capable of serving the re-
quest (i.e., its uplink bandwidth is not occupied because of serving
another request to some peer), the search is stopped and the object
is served. If none of the peers are able to serve the object, then
the object is procured from the origin server. We are interested in
minimizing these requests to the origin server.

For characterizing the second stage, we introduce two endoge-
nous variables: Yij is the probability that object i is served by node
j and Fj is the probability that node j is free to serve an object. In
order to define Fj , we let Rn represent the probability that there
are n active requests in the system at the same time. We make an
additional assumption that the uplink of any peer is capable of serv-
ing only one peer at any given time. A node can however download
data from muliple peers simultaneously. We also assume that it
takes an exogenous t periods to service the object request.

Given this model, the first stage optimization problem can be
characterized as follows:

62

min
Xij

X
i

Pi
Y
j

(1− Yij) (1)

s.t. Fj =
X
n

Rn

1−

X
i

(PiYij)

!n
(2)

Yij = XijFj
Y
j′<j

(1−Xij′Fj′) (3)

X
i

Xij ≤ C (4)

The objective function, Equation (1) seeks to minimize the prob-
ability that a given request must be served by the central server and
the request is not served by any of the peers (product of (1 − Yij)
terms). Equation (2) expresses whether node j is free to serve any
request. The node will be free if it does not serve any object over
every possible number of requests in the system. Equation (3) in-
dicates that node j will serve a request for object i if object i is
present at node j, node j is free, and no lower-numbered node can
serve the object. Constraint (4) limits the number of pre-seeded
objects at a node to be C.

We can linearize Equation (3) to be as follows:

Yij = XijFj

0@1−
X
j′<j

Yij′

1A (5)

The linearization step in proved using induction in Appendix A.
Exploiting the assumption of Poisson request arrival, Rn is:

Rn = e−λt
(λt)n

n!
(6)

Factoring this into Equation (2) and simplifying gives us

Fj =
X
n

e−λt
(λt)n

n!

1−

X
i

(PiYij)

!n

= e−λt
X
n

λt

1−

X
i

(PiYij)

!!n
n!

(7)

Although n will be bounded by the number of possible streams
that can be viewed in a peer-to-peer network (likely 1–2 per STB),
this number will be quite large and can be approximated as infinite.
The summation in Equation (7) thus corresponds to a Taylor series
expansion of the exponential function, simplifying as:

Fj = e−λteλt(1−
P

i(PiYij))

= e

−λt
X
i

(PiYij)

(8)

Although sequential scanning of nodes seems to contradict the
necessity of load balance, the optimization formulation can select
the Xij matrix in such a way as to maintain load balance despite
this ordering.

The above formulation assumes that a client is not free any time
for the entire duration that it is serving any request. This is tech-
nically not true if the client is serving a request that originates at
the same node; however, handling this case separately adds further
complexity to the already non-linear problem. Extending the for-
mulation to account for these cases is a subject of future work. Sec-

tion 4 shows that this restriction on the optimization model does not
affect the results significantly. While the formulation does provide
the optimal solution, there may be instances where other optimal
solutions may exist for the same input, with each optimal solution
generating identical (or near identical) objective function values.

3.3 Discussion
In this section, we show using numerical examples how the for-

mulation behaves under different conditions of load which aids in
further understanding of the formulation while also proving its cor-
rectness. The results shown here assume a pre-seeding capacity
equivalent to 2 streams per node.

When the load on the system increases, that is, the number of
active viewers in the community is high, all the STB’s will be busy
serving one another. There is very little free bandwidth in the net-
work. Therefore to ensure that most requests are served from within
the network, the most popular objects need to be replicated to a
higher degree than those that are less popular. Since the probability
of popular objects being requested is high, the high replication of
such objects will ensure availability of the objects and thus most of
the requests can be served by the P2P network. On the other hand,
when the load on the system is low, the system will likely have
excess bandwidth capacity even after serving the most popular ob-
jects, so it may use some of the STBs to replicate and pre-seed less
popular objects as well.

Load is dependent on the product of arrival rate λ and service
time t; the former will be higher as request rate increases, while
the latter will be higher whenever the asymmetry between client
uplink rate and video bitrate is high (as in modern ADSL and cable
modem deployments).

The difference between a low-load case and a high-load case is
shown in Figure 5 (λt = 20) and Figure 6 (λt = 100). In these nu-
merical examples, the number of caches/STBs was set to 10, each
with a capacity to store 2 objects, and the total number of objects
in the system was set to 20. The object popularity was distributed
according to a Zipf distribution with α = 1. The lower-numbered
objects have higher popularity than the higher-numbered ones.

In Figure 5, λt is low, implying a low system load. Figure 5(a)
shows a scatter plot of which objects are stored at which nodes
(Xij), while Figure 5(b) shows the number of replicated copies of
each object. Objects 1–3 require multiple copies, with the max-
imum being 4 copies. Objects numbered all the way to 15 are
stored at least somewhere in the peer-to-peer network. The number
of replicas decreases with object number, since higher object num-
bers imply less popular objects. The scatter plot shows that more
popular objects are either co-located with other objects that are far
less popular (e.g., node 3) or that are nearly as popular but are repli-
cated (e.g., nodes 4 or 7). The solver compensates for the fact that
sequential search is more likely to target node 1 by storing less pop-
ular objects at node 1 so that it does not become overloaded. The
objective function solution for this value of λt was 55.7%, indicat-
ing that 44.3% of all requests are satisfied by the peers.

In contrast, Figure 6 shows a high-load situation. The replication
capacity is now focused on the most popular objects, with object 1
now getting 7 copies. Objects ranked 8 or lower are not stored
at any peer. The large number of replicas of objects 1 and 2 means
that their load contribution at any individual node is not particularly
high; thus, the formulation does not need to use the low-numbered
nodes only for storing less popular objects. Further, the formula-
tion nearly always colocates objects 1 and 2. The objective function
solution returned by the solver was also poorer at 79.5%, meaning
that only 20.5% of the requests could be offloaded onto peers. Al-
though the fraction of requests served by peers is just less than half

63

6

8

10

12

14

16

18

20
O

b
je

ct
 I

D

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10

O
b

je
ct

 I
D

Node ID

(a) Scatter plot of objects vs. cache

2

3

4

N
u

m
b

e
r

o
f

re
p

li
ca

ti
o

n
s

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
r

o
f

re
p

li
ca

ti
o

n
s

Object ID

(b) Number of replicas of each object

Figure 5: Formulation output for low-load case

6

8

10

12

14

16

18

20

O
b

je
ct

 I
D

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10

O
b

je
ct

 I
D

Node ID

(a) Scatter plot of objects vs. cache

2

3

4

5

6

7

N
u

m
b

e
r

o
f

re
p

li
ca

ti
o

n
s

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
r

o
f

re
p

li
ca

ti
o

n
s

Object ID

(b) Number of replicas of each object

Figure 6: Formulation output for high-load case

of the low-load case, the absolute load reduction is actually higher
than in the low-load case since there is 5 times as much load. Thus,
the optimization formulation effectively utilizes the P2P network to
target both low-load and high-load situations.

4. EXPERIMENTAL EVALUATION
We use simulations to test the amount of server offload that is

achieved by our formulation in a realistic IPTV environment. We
developed a simulator for our scenario by extending the BitTorrent
simulator of Bharambe et al. [5]. The original simulator simulates
a BitTorrent swarm’s data plane and the various BitTorrent mech-
anisms like choking/unchoking, rarest-first piece selection and tit-
for-tat. The underlying network protocol is TCP/IP. The control
packets of TCP/IP are not part of the simulation, however, as they
add a very negligible overhead as compared to the size of data trans-
ferred. We also do not consider network latency as all the peers are
located within the same community. Latency is very small when

compared to the time required for data transfer and has no signifi-
cant impact [11]. We removed the choking/unchoking mechanism
as well as the tit-for-tat fairness enforcer from the simulator. We
also modified the simulator to support multiple file swarms, in-
order streaming piece delivery, and the use of an origin server to
provide data when the peers cannot provide it within the real-time
viewing constraint. Each client can serve at most one request at
any given time but can download from multiple peers at the same
time. We assume that all nodes can connect to each other and ex-
change presence bit-vectors after each transfer. In our simulations,
each movie stream has a total size of 1 GB, which is the average
size of a movie encoded in standard definition. The size of each
data chunk is equivalent to 10 seconds of replay with a streaming
rate of 2 Mbps (SD encoding). The upload rate per client is 1 Mbps
and the download rate at 22 Mbps. The bandwidth model reflects
the AT&T ISP network setup [23]. Each node can be preseeded
with content equivalent to the size of two whole movie streams in
addition to the streams the user may be viewing. This is consis-

64

tent with VoD service, as most VoD rentals are over a period of
24 hours and hence are saved onto the DVRs to enable faster re-
play, rewind, or forward functions when the video is viewed again
within the rental period. We simulate a total of 40 clients and 120
movie streams. The movie streams are assigned popularity prob-
abilities based on the Zipf probability distribution with α = 1 [8].
The optimization problem is solved using BARON [33]. BARON
(Branch-And-Reduce Optimization Navigator) is a solver for non-
convex optimization problems. We ran the solver on a Sun Ultra 40
workstation equipped with two 3.0 GHz dual-core AMD Opteron
processors and 12 GB RAM. Although though the system has 4
processor cores, the solver uses just one core for solving the prob-
lem. Given the non-linear nature of the formulation, a problem of
the given size generates 112,800 non-linear entries and can take the
solver several days (even weeks) to return the global optimal solu-
tion. This solve time is not feasible in our IPTV environment and
hence we use the MINLP approximations that are estimated by the
solver in a relatively quick time (several hours). In many instances
the approximate solution may be the global optimal result. How-
ever, it may take the solver a very long time to confirm that such a
solution is the global optimal. Also, users cannot conclude that the
approximate solution is indeed the optimal solution until the solver
run is complete.

Our experimental evaluation tests the pre-seeded VoD system by
having the peers generate requests for the set of streams. The re-
quest sequences are generated randomly using a Zipf parameter of
1.0 for the base results (Section 4.4 considers the impact of other
request popularity distributions.). The results reported compare our
optimal formulation against two other seeding strategies: uniform
random, by which any stream is equally likely to be pre-seeded at
any node; and weighted-random, by which streams are randomly
pre-seeded to nodes weighted by the popularity of the streams (e.g.,
if one object is twice as popular as another, it will be twice as likely
to be seeded at each node). We also consider the results of the opti-
mized pre-seeding based on whether or not data retrieval is allowed
to upload to other clients while also serving pre-seeded data to the
same client or not. For simplicity, the mathematical formulation
assumes that uploading would not be allowed while also serving
pre-seeded data to the same client. However, this constraint need
not exist in the real system since serving local data does not actually
consume uplink bandwidth. The case where a peer cannot upload
while serving itself is called the “self-serve-no-upload” constraint.
Henceforth we will refer to the results of peer-to-peer delivery us-
ing the optimization formulation and the optimization formulation
with the “self-serve-no-upload” constraint as the optimal case and
the optimal constrained case, respectively. In all the graphs we re-
fer to the two cases as “Optimized” (unconstrained) and “Opt (self-
serve)” (constrained) respectively. We also run the solver for two
different time lengths – 2.5 hours and 4 hours and record both the
solutions. The results for each is referred by appending the solve
time to the terms mentioned above (eg: Optimized-4, Optimized-
2.5 etc).

4.1 Full load results
In our first set of simulations, we assume all clients are viewing

a movie and hence are actively requesting data from either their
local cache, from their peers, or from the central server. All the
clients are present in the network through the entire simulation run.
There is no churn and no failure rate. We ran simulations for five
different sets of requests and then average the result from the runs.
Figure 7 shows the simulation results when all clients are concur-
rently viewing a movie. The graph shows the percentage reduction
in server load due to the different pre-seeding strategies. The per-

20

30

40

50

60

P
e

rc
e

n
ta

g
e

 L
o

a
d

 R
e

d
u

ct
io

n
 a

t
S

e
rv

e
r

0

10

20

30

40

50

60

Optimized-4 Optimized-2.5 Opt(self-serve)-4 Opt(self-serve)-2.5 Weighted Random Random

P
e

rc
e

n
ta

g
e

 L
o

a
d

 R
e

d
u

ct
io

n
 a

t
S

e
rv

e
r

Data Storage Strategies

Figure 7: Percentage reduction in server load due to different
pre-seeding strategies

centage reduction is calculated as the amount of data served by the
P2P network when compared to a unicast distribution of content
by the server. The x-axis represents the different allocation strate-
gies while the y-axis represents the percentage reduction in server
load. The optimized-4 case performs better than all the other stor-
age strategies with a percentage reduction in server load at 50%
while the optimized constrained case in the same time limit shows
a percentage reduction of 48%. The difference between the opti-
mal case and the constrained case is just 2%. This shows that the
difference between allowing a peer to serve another peer or not to
while also serving itself is not substantial, so this is not a signifi-
cant limitation of the formulation. The server load reduction for the
optimized-2.5 case is 49% and 46% for the constrained case, which
are both nearly the same as optimized-4. The weighted-random al-
location strategy lags behind all the optimized cases, with reduction
in server load at 40.5%. Although weighted random does consider
object popularity when assigning data, it does not explicitly con-
sider the constraint on uplink banwdidth, so it is likely that certain
links are overloaded because multiple popular objects were allo-
cated to the same node. Finally, the uniform random case behaves
the worst among all with only 15% reduction in server load. This
behavior is expected, as this case does not consider object popular-
ity at all.

4.2 Reduced duty-cycle results
We test the server load reduction of the different allocation

schemes when the number of clients actively viewing movies
is a percent of the total number of nodes. Figure 8 shows
the results for five different pre-seeding algorithms (optimized-4,
optimized-4 constrained, optimized-2.5, optimized-2.5 constrained
and weighted-random) when the number of clients viewing movies
is at 70%, 50%, and 30% of the total system. In each scenario, the
other clients that are not watching any movie are still a part of the
P2P network and serve any peer requests they may receive. The
x-axis indicates the percentage of nodes that are watching a movie
while the y-axis represents the percentage reduction in server load
as before. In all three scenarios, the optimal and the optimal con-
strained case perform better than weighted-random. When 70%
of the nodes are viewing a movie, the optimized-4 case reduces
server load by 67%, the optimized-2.5 case reduces server load by
65% while the reduction due to weighted-random is 63%. Note that
as we decrease the number of active viewers, the difference in the
server load reduction between the optimal cases and the constrained
cases reduces to zero. This arises because the constraint of not be-
ing able to serve another client while also serving oneself becomes

65

30

40

50

60

70

80

90
P

e
rc

e
n

ta
g

e
 L

o
a

d
 R

e
d

u
ct

io
n

 a
t

S
e

rv
e

r
Optimized - 4

Opt(Self-serve) - 4

Optimized - 2.5

Opt(Self-serve) - 2.5

Weighted Random

0

10

20

30

40

50

60

70

80

90

70 50 30

P
e

rc
e

n
ta

g
e

 L
o

a
d

 R
e

d
u

ct
io

n
 a

t
S

e
rv

e
r

Percentage of active nodes

Optimized - 4

Opt(Self-serve) - 4

Optimized - 2.5

Opt(Self-serve) - 2.5

Weighted Random

Figure 8: Percentage reduction in server load at different duty-
cycles

less important when there are other free clients available. In all
cases, our formulation outperforms the weighted-random heuristic.

4.3 Load-balancing
Load balancing is a key consideration for the optimal perfor-

mance of any replication scheme, including this P2P network. Al-
lowing even a few clients to be substantially more loaded than
the others can noticeably degrade the performance of the network.
Hence, we need to ensure that the objects are evenly distributed
among the clients to ensure that majority of the requests do not go
to just a few clients. As described in Section 3.2, the MINLP for-
mulation ensures load-balancing among the clients in the network
by explicitly considering the freeness at each node.

To check the load-balancing capability of the network, we record
the amount of data served by each peer to other peers in the net-
work. Figure 9 shows the average number of chunks served by
each peer during all the five runs in the optimized-4 case. The y-
axis represents the number of data chunks served by the different
peers listed on the x-axis. We observe that most of the peers serve
a near identical amount of data (around 90–110 chunks). The stan-
dard deviation of the load on the peers was 30 chunks. Node 36
served the least (62 chunks), while Node 5 served the most (174
chunks).

Figure 10 shows the number of chunks served by each node un-
der the weighted-random pre-seeding strategy. Load balance is
much poorer, with a standard deviation of 38 chunks delivered.
Node 23 served the least amount of data at 31 chunks, while Node
16 served the most (186 chunks). Load-balance is poorer here be-
cause weighted-random only considers object popularity, not node
freeness. Finally, Figure 11 shows the average number of chunks
served by each peer during all the five runs for the optimized-2.5
case. We observe that load balancing in this case is not as good
as the above two cases. The standard deviation of the load on the
peers was 40 chunks. Node 3 served the least (67 chunks), while
Node 29 served the most (189 chunks). Thus it does seem that run-
ning for the optimization formulation for a longer duration helps to
reduce load imbalances by better spreading the data.

4.4 Robustness of the system
As mentioned in Section 2, external events can change the view-

ing patterns of users and substantially disturb the popularity pattern
of videos. To test the robustness of our system against such exter-
nalities, we run two separate set of experiments simulating exter-

60

80

100

120

140

160

180

200

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
C

h
u

n
k
s

S
e

rv
e

d

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
C

h
u

n
k
s

S
e

rv
e

d

Node ID

Figure 9: Distribution of load among peers for pre-seeding
based on optimization solution at 4 hours

60

80

100

120

140

160

180

200

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
C

h
u

n
k
s

S
e

rv
e

d

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
C

h
u

n
k
s

S
e

rv
e

d

Node ID

Figure 10: Distribution of load among peers for weighted-
random pre-seeding

nal event occurrences against the different pre-seeding strategies
and measure the reduction in server load. To ensure fairness when
comparing the different Zipf values, we choose a smaller set of ex-
perimental parameters (25 nodes and 50 movie streams) so that we
can run the solver until it reached a globally optimal result. The
problem size generates 30,000 non-linear entries and returns the
global optimal solution in 2.25 hours.

In the first set of experiments, we use the same pre-seeding strat-
egy as in the previous tests (assuming a Zipf popularity model with
α = 1) but then test system performance using a request sequence
that has a different Zipf α value, ranging from 0.75–1.5. Figure 12
shows the reduction in server load for request sequences for differ-
ent Zipf α values for four cases: Actual Optimized (for which the
optimization is performed using a popularity model with the same
α value as the requests), Optimized, Constrained optimized, and
Weighted random (all of which are generated using the pre-seeding
resulting from a Zipf popularity model with α = 1).

As we increase the α values (> 1.0), we see an improvement in
the results. This can be explained by the fact that for higher α val-
ues, few objects have a high degree of popularity and hence most
requests are for these few objects. Given the nature of the requests,
the pieces for these popular objects are now more readily available
in the network and performance is likely to improve. The results
of the optimal pre-seeding generated for α = 1 quite closely ap-
proach the results of the actual optimal pre-seeding, with less than
2% difference. In contrast, weighted-random lags more substan-
tially since higher Zipf values lead to more severe object hot-spots
and consequently encounter more load imbalance.

In contrast, when we decrease the α value to 0.75, we observe a
degradation in performance as compared to our original runs. The

66

60

80

100

120

140

160

180

200
A

v
e

ra
g

e
 N

u
m

b
e

r
o

f
C

h
u

n
k
s

S
e

rv
e

d

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
C

h
u

n
k
s

S
e

rv
e

d

Node ID

Figure 11: Distribution of load among peers for pre-seeding
based on optimization solution at 2.5 hours

20

30

40

50

60

70

P
e

rc
e

n
ta

g
e

 L
o

a
d

 R
e

d
u

ct
io

n
 a

t
S

e
rv

e
r

Actual Optimized

Optimized

Opt(self-serve)

Weighted random

0

10

20

30

40

50

60

70

0.75 1 1.25 1.5

P
e

rc
e

n
ta

g
e

 L
o

a
d

 R
e

d
u

ct
io

n
 a

t
S

e
rv

e
r

Zipf alpha parameter

Actual Optimized

Optimized

Opt(self-serve)

Weighted random

Figure 12: Percentage reduction in server load when Zipf pa-
rameter of request sequence (on X-axis) does not match Zipf
parameter predicted for pre-seeding strategy (1.0)

reduction in server load in the optimal case was 44%. The differ-
ence between the server load reduction due to the optimal formula-
tion and the weighted-random heuristic is much smaller(4%) when
α is 0.75 as compared to the higher values of α as much of the data
is now served by the central server in both cases. The difference
in percentage reduction of load between the optimal case using the
incorrectly-predicted Zipf parameter and the case where the actual
Zipf parameter was used to pre-seed is 6% when α is 0.75: this
is slightly higher than when using higher Zipf parameters, but still
fairly low.

In the second set of experiments, we choose 10% of the objects
uniformly at random and increase their popularity by 5x. The pre-
seeding (both optimal and weighted-random) are generated using
the originally predicted probabilities, but the actual test request se-
quences are generated using the new probabilities. We ran six dif-
ferent sets of simulations and the results were averaged over all the
runs. The average reduction in server load for the optimal case was
48% while the reduction for the weighted-random case was 44%.
These results show that the P2P network can still help in reducing
the central server load in the face of externalities.

We repeated the second experiment with our original data size
of 40 nodes and 120 objects and observed the robustness of the
system. We choose 5% of the objects uniformly at random and in-
crease their popularity by 5x. Like above, the pre-seeding (both
optimal and weighted-random) are generated using the originally
predicted probabilities, but the actual test request sequences are

generated using the new probabilities. We ran five different sets
of simulations and the results were averaged over all the runs. The
average reduction in server load for the optimized-4 case was 48%
while the reduction for the optimized-2.5 case and the weighted-
random case were 47% and 42% respectively.

5. RELATED WORK
Video-on-Demand (VoD) has long been a research goal for sys-

tem architecture, networking, and audio/video coding researchers,
and hundreds of systems and solutions have been developed in
these areas. A common way of implementing a VoD server is to use
unicast and send each client a copy of the media, using one of sev-
eral protocols designed for this purpose (e.g., RTP and RTSP [28,
29]). However, this unicast approach is inefficient with hundreds
or thousands of clients. By taking advantage of the fact that the
same files are requested by many of the clients, many techniques
have been developed using multicast for nearly on-demand view-
ing, or using multiple unicast or multicast streams to reduce server
load while still providing true on-demand service. Such schemes
include patching, staggered broadcasting, hierarchical multicast
stream merging, adaptive piggybacking, and periodic broadcast
protocols [7, 15, 17, 18, 36]. However, IP multicast is rarely seen
on the Internet or even intra-ISP networks, so these solutions have
not had much impact.

Many newer techniques for video data delivery are based on
some form of peer-to-peer or overlay multicast technology, all with
their own protocols to manage peer communication and organiza-
tion [14]. The first such system uses linear chains of clients to
achieve functionality similar to IP multicast and uses these chains
to implement a generalized batching technique for on-demand
video [30]. GloVE combines these chaining and batching tech-
niques, allowing multiple streams of data between different clients,
but relies on IP multicast to make these streams efficient [16].

5.1 Peer-assisted VoD
CoopNet, PALS, PROP, Toast and Zebroid provide on-demand

streaming using P2P networks and are more closely related to our
work. Each of these systems seeks to support an infrastructure-
based system with P2P networks and thus achieve scalability and
reliability. CoopNet provides both live and on-demand streaming
using a multicast tree rooted at the server and divides the streaming
media content into multiple sub-streams using multiple description
coding (MDC) to provide robustness [25]. When CoopNet is used
for on-demand streaming, the P2P network is used only when the
server is overloaded. The server is required to keep track of the
peers and the content held by them, and redirect requests to peers
when it is overloaded. (Clients in our system do this by themselves,
preferring to get content from peers rather than the server). PALS
uses layered-encoding to allow receivers to fetch data from multiple
sources, including either other peers or servers [27]. The receiver
chooses sender peers in such a way as to optimize throughput and
quality of service. PALS distinguishes between senders and re-
ceivers and thus only uses peers as senders when they have the
complete data of the stream. PROP is designed for intranets which
deploy a proxy server [20]. At any time, the requesting client re-
ceives data from either a peer or the proxy server. If data is not
available in the peers or the proxy, the proxy server requests the
missing data from the media server.

As mentioned in the introduction, Toast uses BitTorrent to pro-
vide VoD to peers in a WAN [11]. To guarantee QoS, the P2P
network is supported by a server. Toast explores various piece-
picking policies and different seeding models tested at different
client upload rates and constrained capacity. The system was eval-

67

uated with a single movie with no constraints placed on the piece-
popularity, as this is most similar to the existing BitTorrent file
swarm model [35]. However, using individual swarms for videos
would mismanage and/or underutilize the potential resources avail-
able in a network of set-top boxes.

Zebroid pre-stripes content across peers in an ISP network to
speed up P2P content delivery in an IPTV environment and is most
related to our work [9]. Similar to our model, Zebroid uses a lim-
ited upload bandwidth model and stripes content during idle hours.
Using simulations and through a prototype implementation, they
show that Zebroid is effective in reducing load on the VoD server.
Content data is divided into chunks and each chunk is further di-
vided into stripes. Hence at any time, several peers are required
to serve a single chunk of content. They use erasure codes to deal
with peer failure, which is very low in a IPTV environment [9]. Ze-
broid does not perform any smart prefetching. Suh et al. propose
a push-to-peer VoD system where data is proactively pushed from
the content provider to peers [31]. They investigate data place-
ment strategies and propose a distributed load balancing strategy
for selecting peers. Deterministic and stochastic demand models
are handled by a code-based scheme. They do not consider a server
to support the P2P network [31].

BiToS is a pure P2P VoD service that uses BitTorrent for content
distribution and balances rarest-first piece selection with a need for
real-time delivery [37]. BiToS does not include any backing servers
to guarantee real-time delivery. As a result, the measured results
for all variants indicate that at least 5% of pieces are not received
in time, degrading quality of service.

Other works have provided analysis and simulations of proposed
peer-to-peer VoD systems backed by servers, in which the peer-to-
peer network is used to reduce load from the servers. Cui et al.
propose oStream, a system using overlay multicast trees to stream
most of the video from peers instead of the server [14]. They offer
extensive analysis and some simulation results. Huang et al. de-
scribe a peer-assisted VoD service with different fetching policies
based on mathematical models of client needs and the capabilities
of the server and P2P network [22]. They provide the results of a
discrete-event simulation model based on real-world traces of ac-
cesses to a video to show the potential of such an approach. They
focus on a single-video only and use the Internet as their distribu-
tion medium. Chen et al. describe and simulate a system that em-
ploys topology-aware algorithms and provides economic incentives
to peers that provide data, thus providing additional encouragement
to contribute resources and coordinating delivery to reduce overall
network traffic [10].

Other P2P VoD systems have explored minimizing cross-AS and
cross-ISP traffic by exploiting available P2P bandwidth and stor-
age [24, 6, 21]. None of these consider intelligent pre-seeding.

5.2 Other Related Work
Numerous web caching systems and content distribution net-

works (CDNs) (e.g., Akamai) have sought to offload the delivery
of streaming video content onto geographically-distributed servers.
Peer-to-peer systems represent an alternative approach to this prob-
lem. P2P has advantages in dynamically provisioning resources as
demand rises since each requesting node must also be a provider.
If the peer nodes are actually controlled by a system administrator
(e.g., cable company or PCs on a LAN), they can be set to remain as
background seeds long after their viewing is complete, thus offload-
ing work from remote network servers without requiring additional
infrastructure support through a CDN.

A related problem to on-demand video streaming is that of live
streaming. Live streaming accomplishes a similar goal (distribut-

ing video or other content to large number of people) but does not
have the requirement that the user be able to skip to arbitrary points
in the stream (for example, in the future). However, this is the
primary advantage that BitTorrent exploits: the ability of clients
to exchange pieces from anywhere in the file. BitTorrent-based
systems for live streaming have been proposed, implemented, and
analyzed. Such systems typically introduce a slight delay in play-
back to allow for limited exchange of a small window of content
pieces that have already been published but not yet distributed
to all peers[26][34]. Alternative peer-to-peer approaches include
overlay-based multicast networks (e.g., [12]). These systems also
provide the benefits of peer-to-peer in terms of demand-driven
scalability, but BitTorrent-based systems benefit from BitTorrent’s
more richly-connected peering, use of multiple simultaneous peers
at each peer, and tit-for-tat incentive system.

6. CONCLUSION
This paper presents and evaluates a system for intelligent pre-

seeding of data in a ISP community network to reduce the load on
the uplink between a cable ISP community and the regional hub for
VoD services using peer-to-peer technologies. The system extends
the ISP network by using consumer set-top boxes (STBs) to exploit
any unused bandwidth and storage for streaming video.

A non-linear programming formulation is presented that, based
on a popularity distribution of objects and the bandwidth and capac-
ity constraints of the STBs, decides the number of copies of each
object that need to be replicated in the P2P network to ensure op-
timal usage of the P2P network. We show that the expected object
popularity distribution can be predicted by analyzing IPTV VoD
subscription logs. The formulation also decides at which nodes
in the network the replicated objects should be stored to optimize
peer-to-peer data delivery opportunities.

We test the results of the formulation against a simulator for a
modified BitTorrent peer-to-peer data delivery system. This frame-
work supports streaming data delivery rather than just downloads
by biasing the piece-picking policy toward immediately needed
pieces, and also removes BitTorrent incentive mechanisms such as
tit-for-tat and choking. The BitTorrent client is adapted to com-
municate with a traditional VoD server when the desired piece of
data cannot be delivered by the peers in a timely fashion. Results
from simulations show that using the formulation decision for pre-
seeding can help in efficiently offloading server load. Our math-
ematical model generates results that are more efficient than even
a popularity-aware weighted random preloading strategy, and the
model results are also able to provide more efficient load-balancing
among the peers. The reduction in server load due to our formula-
tion was 50%, while that due to a popularity-aware weighted ran-
dom was 40%. Our model for preseeding is also robust in the face
of various popularity shifts studied. Thus our model combined with
the modified BitTorrent client greatly improves the utilization of
client resources and network bandwidth while also reducing server
and network infrastructure requirements.

Acknowledgments
The authors thank Robin Chen (AT&T) for his help and comments
on the paper. The authors also thank the anonymous reviewers for
their input.

7. REFERENCES
[1] Amazon.com VoD service. www.amazon.com.
[2] CNET. http://asia.cnet.com/crave/2009/06/30/40-of-the-top-

100-itunes-chart-positions-are-taken-by-michael-jackson.

68

[3] Hulu. www.hulu.com.
[4] YouTube. www.youtube.com.
[5] A. Bharambe, C. Herley, and V. Padmanabhan. Analyzing

and improving a bittorrent network’s performance
mechanisms. In Proceedings of IEEE Infocom, 2006.

[6] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates,
and A. Zhang. Improving traffic locality in BitTorrent via
biased neighbor selection. Proc. of IEEE ICDCSâ @ Y06,
2006.

[7] S. Carter and D. Long. Improving video-on-demand server
efficiency through stream tapping. In Proc. International
Conference on Computer Communications and Networks,
pages 200–207, 1997.

[8] Y. Chen, Y. Huang, R. Jana, H. Jiang, M. Rabinovich,
J. Rahe, B. Wei, and Z. Xiao. Towards capacity and profit
optimization of video-on-demand services in a peer-assisted
IPTV platform. Multimedia Systems, 15(1):19–32, 2009.

[9] Y. Chen, R. Jana, D. Stern, B. Wei, M. Yang, and H. Sun.
Zebroid: using IPTV data to support peer-assisted VoD
content delivery. In Proceedings of the 18th international
workshop on Network and operating systems support for
digital audio and video, pages 115–120. ACM New York,
NY, USA, 2009.

[10] Y.-F. Chen et al. When is P2P Technology Beneficial for
IPTV Services. In Proceedings of the 17th International
Workshop on Network and Operating System Support for
Digital Audio and Video, May 2007.

[11] Y. Choe, D. Schuff, J. Dyaberi, and V. Pai. Improving VoD
server efficiency with bittorrent. In Proceedings of the 15th
international conference on Multimedia, pages 117–126.
ACM New York, NY, USA, 2007.

[12] Y. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast (keynote address). In SIGMETRICS ’00:
Proceedings of the 2000 ACM SIGMETRICS international
conference on Measurement and modeling of computer
systems, pages 1–12, New York, NY, USA, 2000. ACM
Press.

[13] B. Cohen. Incentives build robustness in BitTorrent. In
Workshop on Economics of Peer-to-Peer Systems, volume 6,
2003.

[14] Y. Cui, B. Li, and K. Nahrstedt. oStream: asynchronous
streaming multicast in application-layer overlay networks.
IEEE Journal on Selected Areas in Communications,
22(1):91 – 106, 2004.

[15] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling policies
for an on-demand video server with batching. In
MULTIMEDIA ’94: Proceedings of the second ACM
international conference on Multimedia, pages 15–23, New
York, NY, USA, 1994. ACM Press.

[16] L. de Pinho, E. Ishikawa, and C. de Amorim. GloVE: A
distributed environment for scalable video-on-demand
systems. Int. J. High Perform. Comput. Appl. (USA),
17(2):147 – 61, Summer 2003.

[17] D. Eager, M. Vernon, and J. Zahorjan. Minimizing
bandwidth requirements for on-demand data delivery.
Knowledge and Data Engineering, IEEE Transactions on,
13(5):742–757, Sept.-Oct. 2001.

[18] L. Golubchik, J. C. S. Lui, and R. Muntz. Reducing i/o
demand in video-on-demand storage servers. In
SIGMETRICS ’95/PERFORMANCE ’95: Proceedings of the
1995 ACM SIGMETRICS joint international conference on

Measurement and modeling of computer systems, pages
25–36, New York, NY, USA, 1995. ACM Press.

[19] E. Grochowski and R. Halem. Technological impact of
magnetic hard disk drives on storage systems. IBM Systems
Journal, 42(2):338–346, 2003.

[20] L. Guo, S. Chen, S. Ren, X. Chen, and S. Jiang. PROP: a
scalable and reliable P2P assisted proxy streaming system. In
Proceedings. 24th International Conference on Distributed
Computing Systems, 2004., pages 778–786, 2004.

[21] C. Huang, J. Li, and K. Ross. Can internet video-on-demand
be profitable? In Proceedings of the 2007 conference on
Applications, technologies, architectures, and protocols for
computer communications, pages 133–144. ACM New York,
NY, USA, 2007.

[22] C. Huang, J. Li, and K. Ross. Peer-Assisted VoD: Making
Internet Video Distribution Cheap. Proceedings of Sixth
Internaltional Workshop on Peer-to-Peer Systems, 2007.

[23] Y. Huang, Y. Chen, R. Jana, H. Jiang, M. Rabinovich,
A. Reibman, B. Wei, and Z. Xiao. Capacity analysis of
MediaGrid: a P2P IPTV platform for fiber to the node
(FTTN) networks. IEEE Journal on Selected Areas in
Communications, 25(1):131–139, 2007.

[24] V. Janardhan and H. Schulzrinne. Peer assisted VoD for
set-top box based IP network. In Proceedings of the 2007
workshop on Peer-to-peer streaming and IP-TV, pages
335–339. ACM New York, NY, USA, 2007.

[25] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai.
Distributing streaming media content using cooperative
networking. Proceedings of the 12th international workshop
on Network and operating systems support for digital audio
and video, pages 177–186, 2002.

[26] http://www.ppstream.com/. Last checked July 21, 2009.
[27] R. Rejaie and A. Ortega. PALS: Peer-to-Peer Adapative

Layered Streaming. In Proceedings of the 13th International
Workshop on Network and Operating System Support for
Digital Audio and Video, pages 153–161, June 2003.

[28] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications.
IETF RFC 1889, January 1996.

[29] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time
Streaming Protocol (RTSP). IETF RFC 2326, April 1998.

[30] S. Sheu, K. Hua, and W. Tavanapong. Chaining: A
generalized batching technique for video-on-demand
systems. In Procedings of IEEE International Conference on
Multimedia Computing and Systems, pages 110–117, 1997.

[31] K. Suh, C. Diot, J. Kurose, L. Massoulie, C. Neumann,
D. Towsley, and M. Varvello. Push-to-Peer
Video-on-Demand system: design and evaluation. IEEE
Journal on Selected Areas in Communications, 25(9):1706,
2007.

[32] M. Tawarmalani, K. Kannan, and P. De. Allocating Objects
in a Network of Caches: Centralized and Decentralized
Analyses. Management Science, 55(1):132–147, 2009.

[33] M. Tawarmalani and N. Sahinidis. Global optimization of
mixed-integer nonlinear programs: A theoretical and
computational study. Mathematical Programming,
99(3):563–591, 2004.

[34] S. Tewari and L. Kleinrock. Analytical Model for
BitTorrent-based Live Video Streaming. In Proceedings of
the IEEE NIME 2007 Workshop, January 2007.

69

[35] C. Thompson. The BitTorrent Effect. Wired Magazine,
January 2005.

[36] S. Viswanathan and T. Imielinski. Metropolitan area
video-on-demand service using pyramid broadcasting.
Multimedia Systems, 4(4):197–208, August 1996.

[37] A. Vlavianos, M. Iliofotou, and M. Faloutsos. BiToS:
Enhancing BitTorrent for Supporting Streaming
Applications. In Proceedings of the 25th IEEE International
Conference on Computer Communications (INFOCOM),
pages 1–6, April 2006.

APPENDIX
A. LINEARIZATION PROOF

We prove using induction that Equation (3) in Section 3.2 can be
linearized to Equation (5).

Equation (3) is as follows:

Yij = XijFj
Y
j′<j

(1−Xij′Fj′)

and Equation (5) says:

Yij = XijFj(1−
X
j′<j

Yij′)

When j = 1, Equation (3) becomes:

Yi,1 = Xi,1F1 (A.1)

which is trivially equal to Equation (5). When j = 2, Equation (3)
gives:

Yi,2 = Xi,2F2(1−Xi,1F1)

Plugging in Equation (A.1) gives:

Yi,2 = Xi,2F2(1− Yi,1)

= Xi,2F2(1−
X
j′<2

Yi,j′) (A.2)

which is of the form specified in Equation 5.

Having proven the base case, assume that Equation (3) can be
linearized to Equation (5) for j = z:

Yi,z = Xi,zFz
Y
j′<z

(1−Xij′Fj′)

= Xi,zFz(1−
X
j′<z

Yi,j′)

This implies the following two properties:

Y
j′<z

(1−Xij′Fj′) = (1−
X
j′<z

Yi,j′) (A.3)

Xi,zFz =
Yi,z

1−
X
j′<z

Yi,j′
(A.4)

Using Equation (3) for j = z + 1 and plugging in the above
equations, we find that:

Yi,z+1 = Xi,z+1Fz+1

Y
j′<z+1

(1−Xi,j′Fj′)

= Xi,z+1Fz+1(1−Xi,zFz)
Y
j′<z

(1−Xi,j′Fj′)

= Xi,z+1Fz+1(1−
Yi,z

1−
X
j′<z

Yi,j′
)(1−

X
j′<z

Yi,j′)

= Xi,z+1Fz+1((1−
X
j′<z

Yi,j′)− Yi,z)

= Xi,z+1Fz+1(1−
X

j′<z+1

Yi,j′) (A.5)

This completes the proof by induction.

70

