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ABSTRACT

This document provides an introduction to the interprocess communication facili-
ties included in the 4.3BSD release of the UNIX* system.

It discusses the overall model for interprocess communication and introduces the
interprocess communication primitives which have been added to the system. The major-
ity of the document considers the use of these primitives in developing applications. The
reader is expected to be familiar with the C programming language as all examples are
written in C.

* UNIX is a Trademark of Bell Laboratories.
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1. INTRODUCTION

One of the most important additions to UNIX in 4.2BSD was interprocess communication. These facilities
were the result of more than two years of discussion and research. The facilities provided in 4.2BSD incor-
porated many of the ideas from current research, while trying to maintain the UNIX philosophy of simplic-
ity and conciseness. The current release of Berkeley UNIX, 4.3BSD, completes some of the IPC facilities
and provides an upward-compatible interface. It is hoped that the interprocess communication facilities
included in 4.3BSD will establish a standard for UNIX. From the response to the design, it appears many
organizations carrying out work with UNIX are adopting it.

UNIX has previously been very weak in the area of interprocess communication. Prior to the 4BSD
facilities, the only standard mechanism which allowed two processes to communicate were pipes (the mpx
files which were part of Version 7 were experimental). Unfortunately, pipes are very restrictive in that the
two communicating processes must be related through a common ancestor. Further, the semantics of pipes
makes them almost impossible to maintain in a distributed environment.

Earlier attempts at extending the IPC facilities of UNIX have met with mixed reaction. The majority
of the problems have been related to the fact that these facilities have been tied to the UNIX file system,
either through naming or implementation. Consequently, the IPC facilities provided in 4.3BSD have been
designed as a totally independent subsystem. The 4.3BSD IPC allows processes to rendezvous in many
ways. Processes may rendezvous through a UNIX file system-like name space (a space where all names
are path names) as well as through a network name space. In fact, new name spaces may be added at a
future time with only minor changes visible to users. Further, the communication facilities have been
extended to include more than the simple byte stream provided by a pipe. These extensions have resulted
in a completely new part of the system which users will need time to familiarize themselves with. It is
likely that as more use is made of these facilities they will be refined; only time will tell.

This document provides a high-level description of the IPC facilities in 4.3BSD and their use. It is
designed to complement the manual pages for the IPC primitives by examples of their use. The remainder
of this document is organized in four sections. Section 2 introduces the IPC-related system calls and the
basic model of communication. Section 3 describes some of the supporting library routines users may find
useful in constructing distributed applications. Section 4 is concerned with the client/server model used in
developing applications and includes examples of the two major types of servers. Section 5 delves into
advanced topics which sophisticated users are likely to encounter when using the IPC facilities.
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2. BASICS

The basic building block for communication is thesocket. A socket is an endpoint of communication
to which a name may bebound. Each socket in use has atype and one or more associated processes. Sock-
ets exist withincommunication domains. A communication domain is an abstraction introduced to bundle
common properties of processes communicating through sockets. One such property is the scheme used to
name sockets. For example, in the UNIX communication domain sockets are named with UNIX path
names; e.g. a socket may be named ‘‘/dev/foo’’. Sockets normally exchange data only with sockets in the
same domain (it may be possible to cross domain boundaries, but only if some translation process is per-
formed). The 4.3BSD IPC facilities support three separate communication domains: the UNIX domain, for
on-system communication; the Internet domain, which is used by processes which communicate using the
the DARPA standard communication protocols; and the NS domain, which is used by processes which
communicate using the Xerox standard communication protocols*. The underlying communication facili-
ties provided by these domains have a significant influence on the internal system implementation as well
as the interface to socket facilities available to a user. An example of the latter is that a socket ‘‘operating’’
in the UNIX domain sees a subset of the error conditions which are possible when operating in the Internet
(or NS) domain.

0.1. Socket types

Sockets are typed according to the communication properties visible to a user. Processes are pre-
sumed to communicate only between sockets of the same type, although there is nothing that prevents com-
munication between sockets of different types should the underlying communication protocols support this.

Four types of sockets currently are available to a user. Astream socket provides for the bidirectional,
reliable, sequenced, and unduplicated flow of data without record boundaries. Aside from the bidirectional-
ity of data flow, a pair of connected stream sockets provides an interface nearly identical to that of pipes†.

A datagram socket supports bidirectional flow of data which is not promised to be sequenced, reli-
able, or unduplicated. That is, a process receiving messages on a datagram socket may find messages
duplicated, and, possibly, in an order different from the order in which it was sent. An important character-
istic of a datagram socket is that record boundaries in data are preserved. Datagram sockets closely model
the facilities found in many contemporary packet switched networks such as the Ethernet.

A raw socket provides users access to the underlying communication protocols which support socket
abstractions. These sockets are normally datagram oriented, though their exact characteristics are depen-
dent on the interface provided by the protocol. Raw sockets are not intended for the general user; they have
been provided mainly for those interested in developing new communication protocols, or for gaining
access to some of the more esoteric facilities of an existing protocol. The use of raw sockets is considered
in section 5.

A sequenced packet socket is similar to a stream socket, with the exception that record boundaries
are preserved. This interface is provided only as part of the NS socket abstraction, and is very important in
most serious NS applications. Sequenced-packet sockets allow the user to manipulate the SPP or IDP
headers on a packet or a group of packets either by writing a prototype header along with whatever data is
to be sent, or by specifying a default header to be used with all outgoing data, and allows the user to receive
the headers on incoming packets. The use of these options is considered in section 5.

Another potential socket type which has interesting properties is thereliably delivered message
socket. The reliably delivered message socket has similar properties to a datagram socket, but with reliable
delivery. There is currently no support for this type of socket, but a reliably delivered message protocol
similar to Xerox’s Packet Exchange Protocol (PEX) may be simulated at the user level. More information
on this topic can be found in section 5.

* See Internet Transport Protocols, Xerox System Integration Standard (XSIS)028112 for more information.
This document is almost a necessity for one trying to write NS applications.

† In the UNIX domain, in fact, the semantics are identical and, as one might expect, pipes have been imple-
mented internally as simply a pair of connected stream sockets.
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0.2. Socket creation

To create a socket thesocket system call is used:

s = socket(domain, type, protocol);

This call requests that the system create a socket in the specifieddomain and of the specifiedtype. A par-
ticular protocol may also be requested. If the protocol is left unspecified (a value of 0), the system will
select an appropriate protocol from those protocols which comprise the communication domain and which
may be used to support the requested socket type. The user is returned a descriptor (a small integer num-
ber) which may be used in later system calls which operate on sockets. The domain is specified as one of
the manifest constants defined in the file <sys/socket.h>. For the UNIX domain the constant is AF_UNIX*;
for the Internet domain AF_INET; and for the NS domain, AF_NS. The socket types are also defined in
this file and one of SOCK_STREAM, SOCK_DGRAM, SOCK_RAW, or SOCK_SEQPACKET must be
specified. To create a stream socket in the Internet domain the following call might be used:

s = socket(AF_INET, SOCK_STREAM, 0);

This call would result in a stream socket being created with the TCP protocol providing the underlying
communication support. To create a datagram socket for on-machine use the call might be:

s = socket(AF_UNIX, SOCK_DGRAM, 0);

The default protocol (used when theprotocol argument to thesocket call is 0) should be correct for
most every situation. However, it is possible to specify a protocol other than the default; this will be cov-
ered in section 5.

There are several reasons a socket call may fail. Aside from the rare occurrence of lack of memory
(ENOBUFS), a socket request may fail due to a request for an unknown protocol (EPROTONOSUPPORT),
or a request for a type of socket for which there is no supporting protocol (EPROTOTYPE).

0.3. Binding local names

A socket is created without a name. Until a name is bound to a socket, processes have no way to ref-
erence it and, consequently, no messages may be received on it. Communicating processes are bound by an
association. In the Internet and NS domains, an association is composed of local and foreign addresses,
and local and foreign ports, while in the UNIX domain, an association is composed of local and foreign
path names (the phrase ‘‘foreign pathname’’ means a pathname created by a foreign process, not a path-
name on a foreign system). In most domains, associations must be unique. In the Internet domain there
may never be duplicate <protocol, local address, local port, foreign address, foreign port> tuples. UNIX
domain sockets need not always be bound to a name, but when bound there may never be duplicate <proto-
col, local pathname, foreign pathname> tuples. The pathnames may not refer to files already existing on
the system in 4.3; the situation may change in future releases.

Thebind system call allows a process to specify half of an association, <local address, local port> (or
<local pathname>), while theconnect andaccept primitives are used to complete a socket’s association.

In the Internet domain, binding names to sockets can be fairly complex. Fortunately, it is usually not
necessary to specifically bind an address and port number to a socket, because theconnect andsend calls
will automatically bind an appropriate address if they are used with an unbound socket. The process of
binding names to NS sockets is similar in most ways to that of binding names to Internet sockets.

Thebind system call is used as follows:

bind(s, name, namelen);

The bound name is a variable length byte string which is interpreted by the supporting protocol(s). Its
interpretation may vary from communication domain to communication domain (this is one of the proper-
ties which comprise the ‘‘domain’’). As mentioned, in the Internet domain names contain an Internet
address and port number. NS domain names contain an NS address and port number. In the UNIX domain,

* The manifest constants are named AF_whatever as they indicate the ‘‘address format’’ to use in interpreting
names.
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names contain a path name and a family, which is always AF_UNIX. If one wanted to bind the name
‘‘/tmp/foo’’ to a UNIX domain socket, the following code would be used*:

#include <sys/un.h>
...
struct sockaddr_un addr;
...
strcpy(addr.sun_path, "/tmp/foo");
addr.sun_family = AF_UNIX;
bind(s, (struct sockaddr *) &addr, strlen(addr.sun_path) +

sizeof (addr.sun_family));

Note that in determining the size of a UNIX domain address null bytes are not counted, which is whystrlen
is used. In the current implementation of UNIX domain IPC under 4.3BSD, the file name referred to in
addr.sun_path is created as a socket in the system file space. The caller must, therefore, have write permis-
sion in the directory whereaddr.sun_path is to reside, and this file should be deleted by the caller when it is
no longer needed. Future versions of 4BSD may not create this file.

In binding an Internet address things become more complicated. The actual call is similar,

#include <sys/types.h>
#include <netinet/in.h>
...
struct sockaddr_in sin;
...
bind(s, (struct sockaddr *) &sin, sizeof (sin));

but the selection of what to place in the addresssin requires some discussion. We will come back to the
problem of formulating Internet addresses in section 3 when the library routines used in name resolution
are discussed.

Binding an NS address to a socket is even more difficult, especially since the Internet library routines
do not work with NS hostnames. The actual call is again similar:

#include <sys/types.h>
#include <netns/ns.h>
...
struct sockaddr_ns sns;
...
bind(s, (struct sockaddr *) &sns, sizeof (sns));

Again, discussion of what to place in a ‘‘struct sockaddr_ns’’ will be deferred to section 3.

0.4. Connection establishment

Connection establishment is usually asymmetric, with one process a ‘‘client’’ and the other a
‘‘server ’’. The server, when willing to offer its advertised services, binds a socket to a well-known address
associated with the service and then passively ‘‘listens’’ on its socket. It is then possible for an unrelated
process to rendezvous with the server. The client requests services from the server by initiating a ‘‘connec-
tion’’ to the server’s socket. On the client side theconnect call is used to initiate a connection. Using the
UNIX domain, this might appear as,

struct sockaddr_un server;
...
connect(s, (struct sockaddr *)&server, strlen(server.sun_path) +

sizeof (server.sun_family));

while in the Internet domain,

* Note that, although the tendency here is to call the ‘‘addr ’’ structure ‘‘sun’’, doing so would cause problems if
the code were ever ported to a Sun workstation.
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struct sockaddr_in server;
...
connect(s, (struct sockaddr *)&server, sizeof (server));

and in the NS domain,

struct sockaddr_ns server;
...
connect(s, (struct sockaddr *)&server, sizeof (server));

whereserver in the example above would contain either the UNIX pathname, Internet address and port
number, or NS address and port number of the server to which the client process wishes to speak. If the
client process’s socket is unbound at the time of the connect call, the system will automatically select and
bind a name to the socket if necessary; c.f. section 5.4. This is the usual way that local addresses are bound
to a socket.

An error is returned if the connection was unsuccessful (any name automatically bound by the sys-
tem, however, remains). Otherwise, the socket is associated with the server and data transfer may begin.
Some of the more common errors returned when a connection attempt fails are:

ETIMEDOUT
After failing to establish a connection for a period of time, the system decided there was no point in
retrying the connection attempt any more. This usually occurs because the destination host is down,
or because problems in the network resulted in transmissions being lost.

ECONNREFUSED
The host refused service for some reason. This is usually due to a server process not being present at
the requested name.

ENETDOWN or EHOSTDOWN
These operational errors are returned based on status information delivered to the client host by the
underlying communication services.

ENETUNREACH or EHOSTUNREACH
These operational errors can occur either because the network or host is unknown (no route to the
network or host is present), or because of status information returned by intermediate gateways or
switching nodes. Many times the status returned is not sufficient to distinguish a network being
down from a host being down, in which case the system indicates the entire network is unreachable.

For the server to receive a client’s connection it must perform two steps after binding its socket. The
first is to indicate a willingness to listen for incoming connection requests:

listen(s, 5);

The second parameter to thelisten call specifies the maximum number of outstanding connections which
may be queued awaiting acceptance by the server process; this number may be limited by the system.
Should a connection be requested while the queue is full, the connection will not be refused, but rather the
individual messages which comprise the request will be ignored. This gives a harried server time to make
room in its pending connection queue while the client retries the connection request. Had the connection
been returned with the ECONNREFUSED error, the client would be unable to tell if the server was up or
not. As it is now it is still possible to get the ETIMEDOUT error back, though this is unlikely. The back-
log figure supplied with the listen call is currently limited by the system to a maximum of 5 pending con-
nections on any one queue. This avoids the problem of processes hogging system resources by setting an
infinite backlog, then ignoring all connection requests.

With a socket marked as listening, a server mayaccept a connection:

struct sockaddr_in from;
...
fromlen = sizeof (from);
newsock = accept(s, (struct sockaddr *)&from, &fromlen);

(For the UNIX domain,from would be declared as astruct sockaddr_un, and for the NS domain,from
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would be declared as astruct sockaddr_ns, but nothing different would need to be done as far asfromlen is
concerned. In the examples which follow, only Internet routines will be discussed.) A new descriptor is
returned on receipt of a connection (along with a new socket). If the server wishes to find out who its client
is, it may supply a buffer for the client socket’s name. The value-result parameterfromlen is initialized by
the server to indicate how much space is associated withfrom, then modified on return to reflect the true
size of the name. If the client’s name is not of interest, the second parameter may be a null pointer.

Accept normally blocks. That is,accept will not return until a connection is available or the system
call is interrupted by a signal to the process. Further, there is no way for a process to indicate it will accept
connections from only a specific individual, or individuals. It is up to the user process to consider who the
connection is from and close down the connection if it does not wish to speak to the process. If the server
process wants to accept connections on more than one socket, or wants to avoid blocking on the accept call,
there are alternatives; they will be considered in section 5.

0.5. Data transfer

With a connection established, data may begin to flow. To send and receive data there are a number
of possible calls. With the peer entity at each end of a connection anchored, a user can send or receive a
message without specifying the peer. As one might expect, in this case, then the normalread andwrite sys-
tem calls are usable,

write(s, buf, sizeof (buf));
read(s, buf, sizeof (buf));

In addition toread andwrite, the new callssend andrecv may be used:

send(s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), flags);

While send and recv are virtually identical toread andwrite, the extraflags argument is important. The
flags, defined in<sys/socket.h>, may be specified as a non-zero value if one or more of the following is
required:

l l.
MSG_OOB send/receive out of band data
MSG_PEEK look at data without reading
MSG_DONTROUTE send data without routing packets

Out of band data is a notion specific to stream sockets, and one which we will not immediately consider.
The option to have data sent without routing applied to the outgoing packets is currently used only by the
routing table management process, and is unlikely to be of interest to the casual user. The ability to pre-
view data is, however, of interest. When MSG_PEEK is specified with arecv call, any data present is
returned to the user, but treated as still ‘‘unread’’. That is, the nextread or recv call applied to the socket
will return the data previously previewed.

0.6. Discarding sockets

Once a socket is no longer of interest, it may be discarded by applying aclose to the descriptor,

close(s);

If data is associated with a socket which promises reliable delivery (e.g. a stream socket) when a close
takes place, the system will continue to attempt to transfer the data. However, after a fairly long period of
time, if the data is still undelivered, it will be discarded. Should a user have no use for any pending data, it
may perform ashutdown on the socket prior to closing it. This call is of the form:

shutdown(s, how);

wherehow is 0 if the user is no longer interested in reading data, 1 if no more data will be sent, or 2 if no
data is to be sent or received.
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0.7. Connectionless sockets

To this point we have been concerned mostly with sockets which follow a connection oriented
model. However, there is also support for connectionless interactions typical of the datagram facilities
found in contemporary packet switched networks. A datagram socket provides a symmetric interface to
data exchange. While processes are still likely to be client and server, there is no requirement for connec-
tion establishment. Instead, each message includes the destination address.

Datagram sockets are created as before. If a particular local address is needed, thebind operation
must precede the first data transmission. Otherwise, the system will set the local address and/or port when
data is first sent. To send data, thesendto primitive is used,

sendto(s, buf, buflen, flags, (struct sockaddr *)&to, tolen);

Thes, buf, buflen, andflags parameters are used as before. Theto andtolen values are used to indicate the
address of the intended recipient of the message. When using an unreliable datagram interface, it is
unlikely that any errors will be reported to the sender. When information is present locally to recognize a
message that can not be delivered (for instance when a network is unreachable), the call will return −1 and
the global valueerrno will contain an error number.

To receive messages on an unconnected datagram socket, therecvfrom primitive is provided:

recvfrom(s, buf, buflen, flags, (struct sockaddr *)&from, &fromlen);

Once again, thefromlen parameter is handled in a value-result fashion, initially containing the size of the
from buffer, and modified on return to indicate the actual size of the address from which the datagram was
received.

In addition to the two calls mentioned above, datagram sockets may also use theconnect call to asso-
ciate a socket with a specific destination address. In this case, any data sent on the socket will automati-
cally be addressed to the connected peer, and only data received from that peer will be delivered to the user.
Only one connected address is permitted for each socket at one time; a second connect will change the des-
tination address, and a connect to a null address (family AF_UNSPEC) will disconnect. Connect requests
on datagram sockets return immediately, as this simply results in the system recording the peer’s address
(as compared to a stream socket, where a connect request initiates establishment of an end to end connec-
tion). Accept andlisten are not used with datagram sockets.

While a datagram socket socket is connected, errors from recentsend calls may be returned asyn-
chronously. These errors may be reported on subsequent operations on the socket, or a special socket
option used withgetsockopt, SO_ERROR, may be used to interrogate the error status. Aselect for reading
or writing will return true when an error indication has been received. The next operation will return the
error, and the error status is cleared. Other of the less important details of datagram sockets are described
in section 5.

0.8. Input/Output multiplexing

One last facility often used in developing applications is the ability to multiplex i/o requests among
multiple sockets and/or files. This is done using theselect call:

#include <sys/time.h>
#include <sys/types.h>
...

fd_set readmask, writemask, exceptmask;
struct timeval timeout;
...
select(nfds, &readmask, &writemask, &exceptmask, &timeout);

Select takes as arguments pointers to three sets, one for the set of file descriptors for which the caller wishes
to be able to read data on, one for those descriptors to which data is to be written, and one for which excep-
tional conditions are pending; out-of-band data is the only exceptional condition currently implemented by
the socket If the user is not interested in certain conditions (i.e., read, write, or exceptions), the
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corresponding argument to theselect should be a null pointer.

Each set is actually a structure containing an array of long integer bit masks; the size of the array is
set by the definition FD_SETSIZE. The array is be long enough to hold one bit for each of FD_SETSIZE
file descriptors.

The macros FD_SET(fd, &mask) and FD_CLR(fd, &mask) have been provided for adding and
removing file descriptorfd in the setmask. The set should be zeroed before use, and the macro
FD_ZERO(&mask) has been provided to clear the setmask. The parameternfds in theselect call specifies
the range of file descriptors (i.e. one plus the value of the largest descriptor) to be examined in a set.

A timeout value may be specified if the selection is not to last more than a predetermined period of
time. If the fields intimeout are set to 0, the selection takes the form of apoll, returning immediately. If
the last parameter is a null pointer, the selection will block indefinitely*.Select normally returns the num-
ber of file descriptors selected; if theselect call returns due to the timeout expiring, then the value 0 is
returned. If theselect terminates because of an error or interruption, a −1 is returned with the error number
in errno, and with the file descriptor masks unchanged.

Assuming a successful return, the three sets will indicate which file descriptors are ready to be read
from, written to, or have exceptional conditions pending. The status of a file descriptor in a select mask
may be tested with theFD_ISSET(fd, &mask) macro, which returns a non-zero value iffd is a member of
the setmask, and 0 if it is not.

To determine if there are connections waiting on a socket to be used with anaccept call, select can be
used, followed by aFD_ISSET(fd, &mask) macro to check for read readiness on the appropriate socket. If
FD_ISSET returns a non-zero value, indicating permission to read, then a connection is pending on the
socket.

As an example, to read data from two sockets,s1 ands2 as it is available from each and with a one-
second timeout, the following code might be used:

* To be more specific, a return takes place only when a descriptor is selectable, or when a signal is received by
the caller, interrupting the system call.
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#include <sys/time.h>
#include <sys/types.h>
...
fd_set read_template;
struct timeval wait;
...
for (;;) {

wait.tv_sec = 1; /* one second */
wait.tv_usec = 0;

FD_ZERO(&read_template);

FD_SET(s1, &read_template);
FD_SET(s2, &read_template);

nb = select(FD_SETSIZE, &read_template, (fd_set *) 0, (fd_set *) 0, &wait);
if (nb <= 0) {

An error occurred during the select, or
the selecttimed out.

}

if (FD_ISSET(s1, &read_template)) {
Socket #1 is ready to be read from.

}

if (FD_ISSET(s2, &read_template)) {
Socket #2 is ready to be read from.

}
}

In 4.2, the arguments toselect were pointers to integers instead of pointers tofd_sets. This type of
call will still work as long as the number of file descriptors being examined is less than the number of bits
in an integer; however, the methods illustrated above should be used in all current programs.

Select provides a synchronous multiplexing scheme. Asynchronous notification of output comple-
tion, input availability, and exceptional conditions is possible through use of the SIGIO and SIGURG sig-
nals described in section 5.
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3. NETWORK LIBRARY ROUTINES

The discussion in section 2 indicated the possible need to locate and construct network addresses
when using the interprocess communication facilities in a distributed environment. To aid in this task a
number of routines have been added to the standard C run-time library. In this section we will consider the
new routines provided to manipulate network addresses. While the 4.3BSD networking facilities support
both the DARPA standard Internet protocols and the Xerox NS protocols, most of the routines presented in
this section do not apply to the NS domain. Unless otherwise stated, it should be assumed that the routines
presented in this section do not apply to the NS domain.

Locating a service on a remote host requires many levels of mapping before client and server may
communicate. A service is assigned a name which is intended for human consumption; e.g. ‘‘thelogin
server on host monet’’. This name, and the name of the peer host, must then be translated into network
addresses which are not necessarily suitable for human consumption. Finally, the address must then used
in locating a physicallocation androute to the service. The specifics of these three mappings are likely to
vary between network architectures. For instance, it is desirable for a network to not require hosts to be
named in such a way that their physical location is known by the client host. Instead, underlying services
in the network may discover the actual location of the host at the time a client host wishes to communicate.
This ability to have hosts named in a location independent manner may induce overhead in connection
establishment, as a discovery process must take place, but allows a host to be physically mobile without
requiring it to notify its clientele of its current location.

Standard routines are provided for: mapping host names to network addresses, network names to net-
work numbers, protocol names to protocol numbers, and service names to port numbers and the appropriate
protocol to use in communicating with the server process. The file <netdb.h> must be included when using
any of these routines.

3.1. Host names

An Internet host name to address mapping is represented by thehostent structure:

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type (e.g., AF_INET) */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses, null terminated */

};

#define h_addr h_addr_list[0] /* first address, network byte order */

The routinegethostbyname(3N) takes an Internet host name and returns ahostent structure, while the rou-
tine gethostbyaddr(3N) maps Internet host addresses into ahostent structure.

The official name of the host and its public aliases are returned by these routines, along with the
address type (family) and a null terminated list of variable length address. This list of addresses is required
because it is possible for a host to have many addresses, all having the same name. Theh_addr definition
is provided for backward compatibility, and is defined to be the first address in the list of addresses in the
hostent structure.

The database for these calls is provided either by the file/etc/hosts (hosts (5)), or by use of a name-
server,named (8). Because of the differences in these databases and their access protocols, the information
returned may differ. When using the host table version ofgethostbyname, only one address will be
returned, but all listed aliases will be included. The nameserver version may return alternate addresses, but
will not provide any aliases other than one given as argument.

Unlike Internet names, NS names are always mapped into host addresses by the use of a standard NS
Clearinghouse service, a distributed name and authentication server. The algorithms for mapping NS
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names to addresses via a Clearinghouse are rather complicated, and the routines are not part of the standard
libraries. The user-contributed Courier (Xerox remote procedure call protocol) compiler contains routines
to accomplish this mapping; see the documentation and examples provided therein for more information. It
is expected that almost all software that has to communicate using NS will need to use the facilities of the
Courier compiler.

An NS host address is represented by the following:

union ns_host {
u_char c_host[6];
u_short s_host[3];

};

union ns_net {
u_char c_net[4];
u_short s_net[2];

};

struct ns_addr {
union ns_net x_net;
union ns_host x_host;
u_short x_port;

};

The following code fragment inserts a known NS address into ans_addr:
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#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
...
u_long netnum;
struct sockaddr_ns dst;
...
bzero((char *)&dst, sizeof(dst));

/*
* There is no convenient way to assign a long
* integer to a ‘‘union ns_net’’ at present; in
* the future, something will hopefully be provided,
* but this is the portable way to go for now.
* The network number below is the one for the NS net
* that the desired host (gyre) is on.
*/
netnum = htonl(2266);
dst.sns_addr.x_net = *(union ns_net *) &netnum;
dst.sns_family = AF_NS;

/*
* host 2.7.1.0.2a.18 == "gyre:Computer Science:UofMaryland"
*/
dst.sns_addr.x_host.c_host[0] = 0x02;
dst.sns_addr.x_host.c_host[1] = 0x07;
dst.sns_addr.x_host.c_host[2] = 0x01;
dst.sns_addr.x_host.c_host[3] = 0x00;
dst.sns_addr.x_host.c_host[4] = 0x2a;
dst.sns_addr.x_host.c_host[5] = 0x18;
dst.sns_addr.x_port = htons(75);

3.2. Network names

As for host names, routines for mapping network names to numbers, and back, are provided. These
routines return anetent structure:

/*
* Assumption here is that a network number
* fits in 32 bits -- probably a poor one.
*/
struct netent {

char *n_name; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net address type */
int n_net; /* network number, host byte order */

};

The routinesgetnetbyname(3N), getnetbynumber(3N), andgetnetent(3N) are the network counterparts to
the host routines described above. The routines extract their information from/etc/networks.

NS network numbers are determined either by asking your local Xerox Network Administrator (and
hardcoding the information into your code), or by querying the Clearinghouse for addresses. The internet-
work router is the only process that needs to manipulate network numbers on a regular basis; if a process
wishes to communicate with a machine, it should ask the Clearinghouse for that machine’s address (which
will include the net number).
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3.3. Protocol names

For protocols, which are defined in/etc/protocols, the protoent structure defines the protocol-name
mapping used with the routinesgetprotobyname(3N), getprotobynumber(3N), andgetprotoent(3N):

struct protoent {
char *p_name; /* official protocol name */
char **p_aliases; /* alias list */
int p_proto; /* protocol number */

};

In the NS domain, protocols are indicated by the "client type" field of a IDP header. No protocol
database exists; see section 5 for more information.

3.4. Service names

Information regarding services is a bit more complicated. A service is expected to reside at a specific
‘‘port’’ and employ a particular communication protocol. This view is consistent with the Internet domain,
but inconsistent with other network architectures. Further, a service may reside on multiple ports. If this
occurs, the higher level library routines will have to be bypassed or extended. Services available are con-
tained in the file/etc/services. A service mapping is described by theservent structure,

struct servent {
char *s_name; /* official service name */
char **s_aliases; /* alias list */
int s_port; /* port number, network byte order */
char *s_proto; /* protocol to use */

};

The routinegetservbyname(3N) maps service names to a servent structure by specifying a service name
and, optionally, a qualifying protocol. Thus the call

sp = getservbyname("telnet", (char *) 0);

returns the service specification for a telnet server using any protocol, while the call

sp = getservbyname("telnet", "tcp");

returns only that telnet server which uses the TCP protocol. The routinesgetservbyport(3N) andgetser-
vent(3N) are also provided. Thegetservbyport routine has an interface similar to that provided byget-
servbyname; an optional protocol name may be specified to qualify lookups.

In the NS domain, services are handled by a central dispatcher provided as part of the Courier remote
procedure call facilities. Again, the reader is referred to the Courier compiler documentation and to the
Xerox standard* for further details.

3.5. Miscellaneous

With the support routines described above, an Internet application program should rarely have to deal
directly with addresses. This allows services to be developed as much as possible in a network independent
fashion. It is clear, however, that purging all network dependencies is very difficult. So long as the user is
required to supply network addresses when naming services and sockets there will always some network
dependency in a program. For example, the normal code included in client programs, such as the remote
login program, is of the form shown in Figure 1. (This example will be considered in more detail in section
4.)

If we wanted to make the remote login program independent of the Internet protocols and addressing
scheme we would be forced to add a layer of routines which masked the network dependent aspects from
the mainstream login code. For the current facilities available in the system this does not appear to be
worthwhile.

* Courier: The Remote Procedure Call Protocol, XSIS 038112.
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Aside from the address-related data base routines, there are several other routines available in the
run-time library which are of interest to users. These are intended mostly to simplify manipulation of
names and addresses. Table 1 summarizes the routines for manipulating variable length byte strings and
handling byte swapping of network addresses and values.

box;
l | l
l | l.
Call Synopsis
_
bcmp(s1, s2, n) compare byte-strings; 0 if same, not 0 otherwise
bcopy(s1, s2, n) copy n bytes from s1 to s2
bzero(base, n) zero-fill n bytes starting at base
htonl(val) convert 32-bit quantity from host to network byte order
htons(val) convert 16-bit quantity from host to network byte order
ntohl(val) convert 32-bit quantity from network to host byte order
ntohs(val) convert 16-bit quantity from network to host byte order

Table 1. C run-time routines.

The byte swapping routines are provided because the operating system expects addresses to be sup-
plied in network order. On some architectures, such as the VAX, host byte ordering is different than net-
work byte ordering. Consequently, programs are sometimes required to byte swap quantities. The library
routines which return network addresses provide them in network order so that they may simply be copied
into the structures provided to the system. This implies users should encounter the byte swapping problem
only wheninterpreting network addresses. For example, if an Internet port is to be printed out the follow-
ing code would be required:

printf("port number %d\n", ntohs(sp->s_port));

On machines where unneeded these routines are defined as null macros.
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#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>
...
main(argc, argv)

int argc;
char *argv[];

{
struct sockaddr_in server;
struct servent *sp;
struct hostent *hp;
int s;
...
sp = getservbyname("login", "tcp");
if (sp == NULL) {

fprintf(stderr, "rlogin: tcp/login: unknown service\n");
exit(1);

}
hp = gethostbyname(argv[1]);
if (hp == NULL) {

fprintf(stderr, "rlogin: %s: unknown host\n", argv[1]);
exit(2);

}
bzero((char *)&server, sizeof (server));
bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length);
server.sin_family = hp->h_addrtype;
server.sin_port = sp->s_port;
s = socket(AF_INET, SOCK_STREAM, 0);
if (s < 0) {

perror("rlogin: socket");
exit(3);

}
...
/* Connect does the bind() for us */

if (connect(s, (char *)&server, sizeof (server)) < 0) {
perror("rlogin: connect");
exit(5);

}
...

}

Figure 1. Remote login client code.
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4. CLIENT/SERVER MODEL

The most commonly used paradigm in constructing distributed applications is the client/server
model. In this scheme client applications request services from a server process. This implies an asymme-
try in establishing communication between the client and server which has been examined in section 2. In
this section we will look more closely at the interactions between client and server, and consider some of
the problems in developing client and server applications.

The client and server require a well known set of conventions before service may be rendered (and
accepted). This set of conventions comprises a protocol which must be implemented at both ends of a con-
nection. Depending on the situation, the protocol may be symmetric or asymmetric. In a symmetric proto-
col, either side may play the master or slave roles. In an asymmetric protocol, one side is immutably recog-
nized as the master, with the other as the slave. An example of a symmetric protocol is the TELNET proto-
col used in the Internet for remote terminal emulation. An example of an asymmetric protocol is the Inter-
net file transfer protocol, FTP. No matter whether the specific protocol used in obtaining a service is sym-
metric or asymmetric, when accessing a service there is a ‘‘client process’’ and a ‘‘server process’’. We
will first consider the properties of server processes, then client processes.

A server process normally listens at a well known address for service requests. That is, the server
process remains dormant until a connection is requested by a client’s connection to the server’s address. At
such a time the server process ‘‘wakes up’’ and services the client, performing whatever appropriate actions
the client requests of it.

Alternative schemes which use a service server may be used to eliminate a flock of server processes
clogging the system while remaining dormant most of the time. For Internet servers in 4.3BSD, this
scheme has been implemented viainetd, the so called ‘‘internet super-server.’’Inetd listens at a variety of
ports, determined at start-up by reading a configuration file. When a connection is requested to a port on
which inetd is listening, inetd executes the appropriate server program to handle the client. With this
method, clients are unaware that an intermediary such asinetd has played any part in the connection.Inetd
will be described in more detail in section 5.

A similar alternative scheme is used by most Xerox services. In general, the Courier dispatch pro-
cess (if used) accepts connections from processes requesting services of some sort or another. The client
processes request a particular <program number, version number, procedure number> triple. If the dis-
patcher knows of such a program, it is started to handle the request; if not, an error is reported to the client.
In this way, only one port is required to service a large variety of different requests. Again, the Courier
facilities are not available without the use and installation of the Courier compiler. The information pre-
sented in this section applies only to NS clients and services that do not use Courier.

4.1. Servers

In 4.3BSD most servers are accessed at well known Internet addresses or UNIX domain names. For
example, the remote login server’s main loop is of the form shown in Figure 2.

The first step taken by the server is look up its service definition:

sp = getservbyname("login", "tcp");
if (sp == NULL) {

fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(1);

}

The result of thegetservbyname call is used in later portions of the code to define the Internet port at which
it listens for service requests (indicated by a connection).
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main(argc, argv)
int argc;
char *argv[];

{
int f;
struct sockaddr_in from;
struct servent *sp;

sp = getservbyname("login", "tcp");
if (sp == NULL) {

fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(1);

}
...

#ifndef DEBUG
/* Disassociate server from controlling terminal */
...

#endif

sin.sin_port = sp->s_port; /* Restricted port -- see section 5 */
...
f = socket(AF_INET, SOCK_STREAM, 0);
...
if (bind(f, (struct sockaddr *) &sin, sizeof (sin)) < 0) {

...
}
...
listen(f, 5);
for (;;) {

int g, len = sizeof (from);

g = accept(f, (struct sockaddr *) &from, &len);
if (g < 0) {

if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");

continue;
}
if (fork() == 0) {

close(f);
doit(g, &from);

}
close(g);

}
}

Figure 2. Remote login server.
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Step two is to disassociate the server from the controlling terminal of its invoker:

for (i = 0; i < 3; ++i)
close(i);

open("/", O_RDONLY);
dup2(0, 1);
dup2(0, 2);

i = open("/dev/tty", O_RDWR);
if (i >= 0) {

ioctl(i, TIOCNOTTY, 0);
close(i);

}

This step is important as the server will likely not want to receive signals delivered to the process group of
the controlling terminal. Note, however, that once a server has disassociated itself it can no longer send
reports of errors to a terminal, and must log errors viasyslog.

Once a server has established a pristine environment, it creates a socket and begins accepting service
requests. Thebind call is required to insure the server listens at its expected location. It should be noted
that the remote login server listens at a restricted port number, and must therefore be run with a user-id of
root. This concept of a ‘‘restricted port number’’ is 4BSD specific, and is covered in section 5.

The main body of the loop is fairly simple:

for (;;) {
int g, len = sizeof (from);

g = accept(f, (struct sockaddr *)&from, &len);
if (g < 0) {

if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");

continue;
}
if (fork() == 0) { /* Child */

close(f);
doit(g, &from);

}
close(g); /* Parent */

}

An accept call blocks the server until a client requests service. This call could return a failure status if the
call is interrupted by a signal such as SIGCHLD (to be discussed in section 5). Therefore, the return value
from accept is checked to insure a connection has actually been established, and an error report is logged
via syslog if an error has occurred.

With a connection in hand, the server then forks a child process and invokes the main body of the
remote login protocol processing. Note how the socket used by the parent for queuing connection requests
is closed in the child, while the socket created as a result of theaccept is closed in the parent. The address
of the client is also handed thedoit routine because it requires it in authenticating clients.

4.2. Clients

The client side of the remote login service was shown earlier in Figure 1. One can see the separate,
asymmetric roles of the client and server clearly in the code. The server is a passive entity, listening for
client connections, while the client process is an active entity, initiating a connection when invoked.

Let us consider more closely the steps taken by the client remote login process. As in the server pro-
cess, the first step is to locate the service definition for a remote login:
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sp = getservbyname("login", "tcp");
if (sp == NULL) {

fprintf(stderr, "rlogin: tcp/login: unknown service\n");
exit(1);

}

Next the destination host is looked up with agethostbyname call:

hp = gethostbyname(argv[1]);
if (hp == NULL) {

fprintf(stderr, "rlogin: %s: unknown host\n", argv[1]);
exit(2);

}

With this accomplished, all that is required is to establish a connection to the server at the requested host
and start up the remote login protocol. The address buffer is cleared, then filled in with the Internet address
of the foreign host and the port number at which the login process resides on the foreign host:

bzero((char *)&server, sizeof (server));
bcopy(hp->h_addr, (char *) &server.sin_addr, hp->h_length);
server.sin_family = hp->h_addrtype;
server.sin_port = sp->s_port;

A socket is created, and a connection initiated. Note thatconnect implicitly performs abind call, sinces is
unbound.

s = socket(hp->h_addrtype, SOCK_STREAM, 0);
if (s < 0) {

perror("rlogin: socket");
exit(3);

}
...
if (connect(s, (struct sockaddr *) &server, sizeof (server)) < 0) {

perror("rlogin: connect");
exit(4);

}

The details of the remote login protocol will not be considered here.

4.3. Connectionless servers

While connection-based services are the norm, some services are based on the use of datagram sock-
ets. One, in particular, is the ‘‘rwho’’ service which provides users with status information for hosts con-
nected to a local area network. This service, while predicated on the ability tobroadcast information to all
hosts connected to a particular network, is of interest as an example usage of datagram sockets.

A user on any machine running the rwho server may find out the current status of a machine with the
ruptime(1) program. The output generated is illustrated in Figure 3.

Status information for each host is periodically broadcast by rwho server processes on each machine.
The same server process also receives the status information and uses it to update a database. This database
is then interpreted to generate the status information for each host. Servers operate autonomously, coupled
only by the local network and its broadcast capabilities.

Note that the use of broadcast for such a task is fairly inefficient, as all hosts must process each mes-
sage, whether or not using an rwho server. Unless such a service is sufficiently universal and is frequently
used, the expense of periodic broadcasts outweighs the simplicity.

The rwho server, in a simplified form, is pictured in Figure 4. There are two separate tasks per-
formed by the server. The first task is to act as a receiver of status information broadcast by other hosts on
the network. This job is carried out in the main loop of the program. Packets received at the rwho port are
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l r l l l l l.
arpa up 9:45, 5 users, load 1.15, 1.39, 1.31
cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59
calder up 10:10, 0 users, load 0.27, 0.15, 0.14
dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65
degas up 25+09:48, 0 users, load 1.49, 1.43, 1.41
ear up 5+00:05, 0 users, load 1.51, 1.54, 1.56
ernie down 0:24
esvax down 17:04
ingres down 0:26
kim up 3+09:16, 8 users, load 2.03, 2.46, 3.11
matisse up 3+06:18, 0 users, load 0.03, 0.03, 0.05
medea up 3+09:39, 2 users, load 0.35, 0.37, 0.50
merlin down 19+15:37
miro up 1+07:20, 7 users, load 4.59, 3.28, 2.12
monet up 1+00:43, 2 users, load 0.22, 0.09, 0.07
oz down 16:09
statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86
ucbvax up 9:34, 2 users, load 6.08, 5.16, 3.28

Figure 3. ruptime output.

interrogated to insure they’ve been sent by another rwho server process, then are time stamped with their
arrival time and used to update a file indicating the status of the host. When a host has not been heard from
for an extended period of time, the database interpretation routines assume the host is down and indicate
such on the status reports. This algorithm is prone to error as a server may be down while a host is actually
up, but serves our current needs.

The second task performed by the server is to supply information regarding the status of its host.
This involves periodically acquiring system status information, packaging it up in a message and broadcast-
ing it on the local network for other rwho servers to hear. The supply function is triggered by a timer and
runs off a signal. Locating the system status information is somewhat involved, but uninteresting. Decid-
ing where to transmit the resultant packet is somewhat problematical, however.

Status information must be broadcast on the local network. For networks which do not support the
notion of broadcast another scheme must be used to simulate or replace broadcasting. One possibility is to
enumerate the known neighbors (based on the status messages received from other rwho servers). This,
unfortunately, requires some bootstrapping information, for a server will have no idea what machines are its
neighbors until it receives status messages from them. Therefore, if all machines on a net are freshly
booted, no machine will have any known neighbors and thus never receive, or send, any status information.
This is the identical problem faced by the routing table management process in propagating routing status
information. The standard solution, unsatisfactory as it may be, is to inform one or more servers of known
neighbors and request that they always communicate with these neighbors. If each server has at least one
neighbor supplied to it, status information may then propagate through a neighbor to hosts which are not
(possibly) directly neighbors. If the server is able to support networks which provide a broadcast capabil-
ity, as well as those which do not, then networks with an arbitrary topology may share status information*.

It is important that software operating in a distributed environment not have any site-dependent infor-
mation compiled into it. This would require a separate copy of the server at each host and make mainte-
nance a severe headache. 4.3BSD attempts to isolate host-specific information from applications by pro-
viding system calls which return the necessary information*. A mechanism exists, in the form of anioctl
call, for finding the collection of networks to which a host is directly connected. Further, a local network

* One must, however, be concerned about ‘‘loops’’. That is, if a host is connected to multiple networks, it will
receive status information from itself. This can lead to an endless, wasteful, exchange of information.

* An example of such a system call is thegethostname(2) call which returns the host’s ‘‘official’’ name.
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main()
{

...
sp = getservbyname("who", "udp");
net = getnetbyname("localnet");
sin.sin_addr = inet_makeaddr(INADDR_ANY, net);
sin.sin_port = sp->s_port;
...
s = socket(AF_INET, SOCK_DGRAM, 0);
...
on = 1;
if (setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof(on)) < 0) {

syslog(LOG_ERR, "setsockopt SO_BROADCAST: %m");
exit(1);

}
bind(s, (struct sockaddr *) &sin, sizeof (sin));
...
signal(SIGALRM, onalrm);
onalrm();
for (;;) {

struct whod wd;
int cc, whod, len = sizeof (from);

cc = recvfrom(s, (char *)&wd, sizeof (struct whod), 0,
(struct sockaddr *)&from, &len);

if (cc <= 0) {
if (cc < 0 && errno != EINTR)

syslog(LOG_ERR, "rwhod: recv: %m");
continue;

}
if (from.sin_port != sp->s_port) {

syslog(LOG_ERR, "rwhod: %d: bad from port",
ntohs(from.sin_port));

continue;
}
...
if (!verify(wd.wd_hostname)) {

syslog(LOG_ERR, "rwhod: malformed host name from %x",
ntohl(from.sin_addr.s_addr));

continue;
}
(void) sprintf(path, "%s/whod.%s", RWHODIR, wd.wd_hostname);
whod = open(path, O_WRONLY | O_CREAT | O_TRUNC, 0666);
...
(void) time(&wd.wd_recvtime);
(void) write(whod, (char *)&wd, cc);
(void) close(whod);

}
}

Figure 4. rwho server.

broadcasting mechanism has been implemented at the socket level. Combining these two features allows a
process to broadcast on any directly connected local network which supports the notion of broadcasting in a
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site independent manner. This allows 4.3BSD to solve the problem of deciding how to propagate status
information in the case ofrwho, or more generally in broadcasting: Such status information is broadcast to
connected networks at the socket level, where the connected networks have been obtained via the appropri-
ateioctl calls. The specifics of such broadcastings are complex, however, and will be covered in section 5.
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5. ADVANCED TOPICS

A number of facilities have yet to be discussed. For most users of the IPC the mechanisms already
described will suffice in constructing distributed applications. However, others will find the need to utilize
some of the features which we consider in this section.

5.1. Out of band data

The stream socket abstraction includes the notion of ‘‘out of band’’ data. Out of band data is a logi-
cally independent transmission channel associated with each pair of connected stream sockets. Out of band
data is delivered to the user independently of normal data. The abstraction defines that the out of band data
facilities must support the reliable delivery of at least one out of band message at a time. This message
may contain at least one byte of data, and at least one message may be pending delivery to the user at any
one time. For communications protocols which support only in-band signaling (i.e. the urgent data is deliv-
ered in sequence with the normal data), the system normally extracts the data from the normal data stream
and stores it separately. This allows users to choose between receiving the urgent data in order and receiv-
ing it out of sequence without having to buffer all the intervening data. It is possible to ‘‘peek’’ (via
MSG_PEEK) at out of band data. If the socket has a process group, a SIGURG signal is generated when
the protocol is notified of its existence. A process can set the process group or process id to be informed by
the SIGURG signal via the appropriatefcntl call, as described below for SIGIO. If multiple sockets may
have out of band data awaiting delivery, aselect call for exceptional conditions may be used to determine
those sockets with such data pending. Neither the signal nor the select indicate the actual arrival of the out-
of-band data, but only notification that it is pending.

In addition to the information passed, a logical mark is placed in the data stream to indicate the point
at which the out of band data was sent. The remote login and remote shell applications use this facility to
propagate signals between client and server processes. When a signal flushs any pending output from the
remote process(es), all data up to the mark in the data stream is discarded.

To send an out of band message the MSG_OOB flag is supplied to asend or sendto calls, while to
receive out of band data MSG_OOB should be indicated when performing arecvfrom or recv call. To find
out if the read pointer is currently pointing at the mark in the data stream, the SIOCATMARK ioctl is pro-
vided:

ioctl(s, SIOCATMARK, &yes);

If yes is a 1 on return, the next read will return data after the mark. Otherwise (assuming out of band data
has arrived), the next read will provide data sent by the client prior to transmission of the out of band sig-
nal. The routine used in the remote login process to flush output on receipt of an interrupt or quit signal is
shown in Figure 5. It reads the normal data up to the mark (to discard it), then reads the out-of-band byte.

A process may also read or peek at the out-of-band data without first reading up to the mark. This is
more difficult when the underlying protocol delivers the urgent data in-band with the normal data, and only
sends notification of its presence ahead of time (e.g., the TCP protocol used to implement streams in the
Internet domain). With such protocols, the out-of-band byte may not yet have arrived when arecv is done
with the MSG_OOB flag. In that case, the call will return an error of EWOULDBLOCK. Worse, there
may be enough in-band data in the input buffer that normal flow control prevents the peer from sending the
urgent data until the buffer is cleared. The process must then read enough of the queued data that the
urgent data may be delivered.

Certain programs that use multiple bytes of urgent data and must handle multiple urgent signals (e.g.,
telnet (1C)) need to retain the position of urgent data within the stream. This treatment is available as a
socket-level option, SO_OOBINLINE; seesetsockopt (2) for usage. With this option, the position of urgent
data (the ‘‘mark’’) is retained, but the urgent data immediately follows the mark within the normal data
stream returned without the MSG_OOB flag. Reception of multiple urgent indications causes the mark to
move, but no out-of-band data are lost.
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#include <sys/ioctl.h>
#include <sys/file.h>
...
oob()
{

int out = FWRITE, mark;
char waste[BUFSIZ];

/* flush local terminal output */
ioctl(1, TIOCFLUSH, (char *)&out);
for (;;) {

if (ioctl(rem, SIOCATMARK, &mark) < 0) {
perror("ioctl");
break;

}
if (mark)

break;
(void) read(rem, waste, sizeof (waste));

}
if (recv(rem, &mark, 1, MSG_OOB) < 0) {

perror("recv");
...

}
...

}

Figure 5. Flushing terminal I/O on receipt of out of band data.

5.2. Non-Blocking Sockets

It is occasionally convenient to make use of sockets which do not block; that is, I/O requests which
cannot complete immediately and would therefore cause the process to be suspended awaiting completion
are not executed, and an error code is returned. Once a socket has been created via thesocket call, it may
be marked as non-blocking byfcntl as follows:

#include <fcntl.h>
...
int s;
...
s = socket(AF_INET, SOCK_STREAM, 0);
...
if (fcntl(s, F_SETFL, FNDELAY) < 0)

perror("fcntl F_SETFL, FNDELAY");
exit(1);

}
...

When performing non-blocking I/O on sockets, one must be careful to check for the error
EWOULDBLOCK (stored in the global variableerrno), which occurs when an operation would normally
block, but the socket it was performed on is marked as non-blocking. In particular,accept, connect, send,
recv, read, andwrite can all return EWOULDBLOCK, and processes should be prepared to deal with such
return codes. If an operation such as asend cannot be done in its entirety, but partial writes are sensible
(for example, when using a stream socket), the data that can be sent immediately will be processed, and the
return value will indicate the amount actually sent.
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5.3. Interrupt driven socket I/O

The SIGIO signal allows a process to be notified via a signal when a socket (or more generally, a  file
descriptor) has data waiting to be read. Use of the SIGIO facility requires three steps: First, the process
must set up a SIGIO signal handler by use of thesignal or sigvec calls. Second, it must set the process id or
process group id which is to receive notification of pending input to its own process id, or the process group
id of its process group (note that the default process group of a socket is group zero). This is accomplished
by use of anfcntl call. Third, it must enable asynchronous notification of pending I/O requests with another
fcntl call. Sample code to allow a given process to receive information on pending I/O requests as they
occur for a sockets is given in Figure 6. With the addition of a handler for SIGURG, this code can also be
used to prepare for receipt of SIGURG signals.

#include <fcntl.h>
...
int io_handler();
...
signal(SIGIO, io_handler);

/* Set the process receiving SIGIO/SIGURG signals to us */

if (fcntl(s, F_SETOWN, getpid()) < 0) {
perror("fcntl F_SETOWN");
exit(1);

}

/* Allow receipt of asynchronous I/O signals */

if (fcntl(s, F_SETFL, FASYNC) < 0) {
perror("fcntl F_SETFL, FASYNC");
exit(1);

}

Figure 6. Use of asynchronous notification of I/O requests.

5.4. Signals and process groups

Due to the existence of the SIGURG and SIGIO signals each socket has an associated process num-
ber, just as is done for terminals. This value is initialized to zero, but may be redefined at a later time with
the F_SETOWNfcntl, such as was done in the code above for SIGIO. To set the socket’s process id for
signals, positive arguments should be given to thefcntl call. To set the socket’s process group for signals,
negative arguments should be passed tofcntl. Note that the process number indicates either the associated
process id or the associated process group; it is impossible to specify both at the same time. A similarfcntl,
F_GETOWN, is available for determining the current process number of a socket.

Another signal which is useful when constructing server processes is SIGCHLD. This signal is
delivered to a process when any child processes have changed state. Normally servers use the signal to
‘‘reap’’ child processes that have exited without explicitly awaiting their termination or periodic polling for
exit status. For example, the remote login server loop shown in Figure 2 may be augmented as shown in
Figure 7.

If the parent server process fails to reap its children, a large number of ‘‘zombie’’ processes may be
created.

5.5. Pseudo terminals

Many programs will not function properly without a terminal for standard input and output. Since
sockets do not provide the semantics of terminals, it is often necessary to have a process communicating
over the network do so through apseudo-terminal. A pseudo- terminal is actually a pair of devices, master
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int reaper();
...
signal(SIGCHLD, reaper);
listen(f, 5);
for (;;) {

int g, len = sizeof (from);

g = accept(f, (struct sockaddr *)&from, &len,);
if (g < 0) {

if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");

continue;
}
...

}
...
#include <wait.h>
reaper()
{

union wait status;

while (wait3(&status, WNOHANG, 0) > 0)
;

}

Figure 7. Use of the SIGCHLD signal.

and slave, which allow a process to serve as an active agent in communication between processes and
users. Data written on the slave side of a pseudo-terminal is supplied as input to a process reading from the
master side, while data written on the master side are processed as terminal input for the slave. In this way,
the process manipulating the master side of the pseudo-terminal has control over the information read and
written on the slave side as if it were manipulating the keyboard and reading the screen on a real terminal.
The purpose of this abstraction is to preserve terminal semantics over a network connection— that is, the
slave side appears as a normal terminal to any process reading from or writing to it.

For example, the remote login server uses pseudo-terminals for remote login sessions. A user log-
ging in to a machine across the network is provided a shell with a slave pseudo-terminal as standard input,
output, and error. The server process then handles the communication between the programs invoked by
the remote shell and the user’s local client process. When a user sends a character that generates an inter-
rupt on the remote machine that flushes terminal output, the pseudo-terminal generates a control message
for the server process. The server then sends an out of band message to the client process to signal a flush
of data at the real terminal and on the intervening data buffered in the network.

Under 4.3BSD, the name of the slave side of a pseudo-terminal is of the form/dev/ttyxy, wherex is a
single letter starting at ‘p’ and continuing to ‘t’.y is a hexadecimal digit (i.e., a single character in the
range 0 through 9 or ‘a’ through ‘f’). The master side of a pseudo-terminal is/dev/ptyxy, wherex andy
correspond to the slave side of the pseudo-terminal.

In general, the method of obtaining a pair of master and slave pseudo-terminals is to find a pseudo-
terminal which is not currently in use. The master half of a pseudo-terminal is a single-open device; thus,
each master may be opened in turn until an open succeeds. The slave side of the pseudo-terminal is then
opened, and is set to the proper terminal modes if necessary. The process thenforks; the child closes the
master side of the pseudo-terminal, andexecs the appropriate program. Meanwhile, the parent closes the
slave side of the pseudo-terminal and begins reading and writing from the master side. Sample code mak-
ing use of pseudo-terminals is given in Figure 8; this code assumes that a connection on a sockets exists,
connected to a peer who wants a service of some kind, and that the process has disassociated itself from
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any previous controlling terminal.

gotpty = 0;
for (c = ’p’; !gotpty && c <= ’s’; c++) {

line = "/dev/ptyXX";
line[sizeof("/dev/pty")-1] = c;
line[sizeof("/dev/ptyp")-1] = ’0’;
if (stat(line, &statbuf) < 0)

break;
for (i = 0; i < 16; i++) {

line[sizeof("/dev/ptyp")-1] = "0123456789abcdef"[i];
master = open(line, O_RDWR);
if (master > 0) {

gotpty = 1;
break;

}
}

}
if (!gotpty) {

syslog(LOG_ERR, "All network ports in use");
exit(1);

}

line[sizeof("/dev/")-1] = ’t’;
slave = open(line, O_RDWR); /*slave is now slave side */
if (slave < 0) {

syslog(LOG_ERR, "Cannot open slave pty %s", line);
exit(1);

}

ioctl(slave, TIOCGETP, &b); /* Set slave tty modes */
b.sg_flags = CRMOD|XTABS|ANYP;
ioctl(slave, TIOCSETP, &b);

i = fork();
if (i < 0) {

syslog(LOG_ERR, "fork: %m");
exit(1);

} else if (i) { /* Parent */
close(slave);
...

} else { /* Child */
(void) close(s);
(void) close(master);
dup2(slave, 0);
dup2(slave, 1);
dup2(slave, 2);
if (slave > 2)

(void) close(slave);
...

}

Figure 8. Creation and use of a pseudo terminal
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5.6. Selecting specific protocols

If the third argument to thesocket call is 0, socket will select a default protocol to use with the
returned socket of the type requested. The default protocol is usually correct, and alternate choices are not
usually available. However, when using ‘‘raw’’ sockets to communicate directly with lower-level protocols
or hardware interfaces, the protocol argument may be important for setting up demultiplexing. For exam-
ple, raw sockets in the Internet family may be used to implement a new protocol above IP, and the socket
will receive packets only for the protocol specified. To obtain a particular protocol one determines the pro-
tocol number as defined within the communication domain. For the Internet domain one may use one of
the library routines discussed in section 3, such asgetprotobyname:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
...
pp = getprotobyname("newtcp");
s = socket(AF_INET, SOCK_STREAM, pp->p_proto);

This would result in a sockets using a stream based connection, but with protocol type of ‘‘newtcp’’
instead of the default ‘‘tcp.’’

In the NS domain, the available socket protocols are defined in <netns/ns.h>. To create a raw socket
for Xerox Error Protocol messages, one might use:

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
...
s = socket(AF_NS, SOCK_RAW, NSPROTO_ERROR);

5.7. Address binding

As was mentioned in section 2, binding addresses to sockets in the Internet and NS domains can be
fairly complex. As a brief reminder, these associations are composed of local and foreign addresses, and
local and foreign ports. Port numbers are allocated out of separate spaces, one for each system and one for
each domain on that system. Through thebind system call, a process may specify half of an association,
the <local address, local port> part, while theconnect andaccept primitives are used to complete a socket’s
association by specifying the <foreign address, foreign port> part. Since the association is created in two
steps the association uniqueness requirement indicated previously could be violated unless care is taken.
Further, it is unrealistic to expect user programs to always know proper values to use for the local address
and local port since a host may reside on multiple networks and the set of allocated port numbers is not
directly accessible to a user.

To simplify local address binding in the Internet domain the notion of a ‘‘wildcard’’ address has been
provided. When an address is specified as INADDR_ANY (a manifest constant defined in <netinet/in.h>),
the system interprets the address as ‘‘any valid address’’. For example, to bind a specific port number to a
socket, but leave the local address unspecified, the following code might be used:
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#include <sys/types.h>
#include <netinet/in.h>
...
struct sockaddr_in sin;
...
s = socket(AF_INET, SOCK_STREAM, 0);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);
bind(s, (struct sockaddr *) &sin, sizeof (sin));

Sockets with wildcarded local addresses may receive messages directed to the specified port number, and
sent to any of the possible addresses assigned to a host. For example, if a host has addresses 128.32.0.4 and
10.0.0.78, and a socket is bound as above, the process will be able to accept connection requests which are
addressed to 128.32.0.4 or 10.0.0.78. If a server process wished to only allow hosts on a given network
connect to it, it would bind the address of the host on the appropriate network.

In a similar fashion, a local port may be left unspecified (specified as zero), in which case the system
will select an appropriate port number for it. This shortcut will work both in the Internet and NS domains.
For example, to bind a specific local address to a socket, but to leave the local port number unspecified:

hp = gethostbyname(hostname);
if (hp == NULL) {

...
}
bcopy(hp->h_addr, (char *) sin.sin_addr, hp->h_length);
sin.sin_port = htons(0);
bind(s, (struct sockaddr *) &sin, sizeof (sin));

The system selects the local port number based on two criteria. The first is that on 4BSD systems, Internet
ports below IPPORT_RESERVED (1024) (for the Xerox domain, 0 through 3000) are reserved for privi-
leged users (i.e., the super user); Internet ports above IPPORT_USERRESERVED (50000) are reserved for
non-privileged servers. The second is that the port number is not currently bound to some other socket. In
order to find a free Internet port number in the privileged range therresvport library routine may be used as
follows to return a stream socket in with a privileged port number:

int lport = IPPORT_RESERVED − 1;
int s;
s = rresvport(&lport);
if (s < 0) {

if (errno == EAGAIN)
fprintf(stderr, "socket: all ports in use\n");

else
perror("rresvport: socket");

...
}

The restriction on allocating ports was done to allow processes executing in a ‘‘secure’’ environment to per-
form authentication based on the originating address and port number. For example, therlogin(1) com-
mand allows users to log in across a network without being asked for a password, if two conditions hold:
First, the name of the system the user is logging in from is in the file/etc/hosts.equiv on the system he is
logging in to (or the system name and the user name are in the user’s.rhosts file in the user’s home direc-
tory), and second, that the user’s rlogin process is coming from a privileged port on the machine from
which he is logging. The port number and network address of the machine from which the user is logging
in can be determined either by thefrom result of theaccept call, or from thegetpeername call.

In certain cases the algorithm used by the system in selecting port numbers is unsuitable for an appli-
cation. This is because associations are created in a two step process. For example, the Internet file
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transfer protocol, FTP, specifies that data connections must always originate from the same local port.
However, duplicate associations are avoided by connecting to different foreign ports. In this situation the
system would disallow binding the same local address and port number to a socket if a previous data con-
nection’s socket still existed. To override the default port selection algorithm, an option call must be per-
formed prior to address binding:

...
int on = 1;
...
setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
bind(s, (struct sockaddr *) &sin, sizeof (sin));

With the above call, local addresses may be bound which are already in use. This does not violate the
uniqueness requirement as the system still checks at connect time to be sure any other sockets with the
same local address and port do not have the same foreign address and port. If the association already
exists, the error EADDRINUSE is returned.

5.8. Broadcasting and determining network configuration

By using a datagram socket, it is possible to send broadcast packets on many networks supported by
the system. The network itself must support broadcast; the system provides no simulation of broadcast in
software. Broadcast messages can place a high load on a network since they force every host on the net-
work to service them. Consequently, the ability to send broadcast packets has been limited to sockets
which are explicitly marked as allowing broadcasting. Broadcast is typically used for one of two reasons: it
is desired to find a resource on a local network without prior knowledge of its address, or important func-
tions such as routing require that information be sent to all accessible neighbors.

To send a broadcast message, a datagram socket should be created:

s = socket(AF_INET, SOCK_DGRAM, 0);

or

s = socket(AF_NS, SOCK_DGRAM, 0);

The socket is marked as allowing broadcasting,

int on = 1;

setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof (on));

and at least a port number should be bound to the socket:

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);
bind(s, (struct sockaddr *) &sin, sizeof (sin));

or, for the NS domain,

sns.sns_family = AF_NS;
netnum = htonl(net);
sns.sns_addr.x_net = *(union ns_net *) &netnum; /* insert net number */
sns.sns_addr.x_port = htons(MYPORT);
bind(s, (struct sockaddr *) &sns, sizeof (sns));

The destination address of the message to be broadcast depends on the network(s) on which the message is
to be broadcast. The Internet domain supports a shorthand notation for broadcast on the local network, the
address INADDR_BROADCAST (defined in <netinet/in.h>. To determine the list of addresses for all
reachable neighbors requires knowledge of the networks to which the host is connected. Since this infor-
mation should be obtained in a host-independent fashion and may be impossible to derive, 4.3BSD pro-
vides a method of retrieving this information from the system data structures. The SIOCGIFCONFioctl
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call returns the interface configuration of a host in the form of a singleifconf structure; this structure con-
tains a ‘‘data area’’ which is made up of an array of ofifreq structures, one for each network interface to
which the host is connected. These structures are defined in<net/if.h> as follows:

struct ifconf {
int ifc_len; /* size of associated buffer */
union {

caddr_t ifcu_buf;
struct ifreq *ifcu_req;

} ifc_ifcu;
};

#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */

#define IFNAMSIZ 16

struct ifreq {
char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */
union {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;
short ifru_flags;
caddr_t ifru_data;

} ifr_ifru;
};

#define ifr_addr ifr_ifru.ifru_addr /* address */
#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link */
#define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */
#define ifr_flags ifr_ifru.ifru_flags /* flags */
#define ifr_data ifr_ifru.ifru_data /* for use by interface */

The actual call which obtains the interface configuration is

struct ifconf ifc;
char buf[BUFSIZ];

ifc.ifc_len = sizeof (buf);
ifc.ifc_buf = buf;
if (ioctl(s, SIOCGIFCONF, (char *) &ifc) < 0) {

...
}

After this call buf will contain oneifreq structure for each network to which the host is connected, and
ifc.ifc_len will have been modified to reflect the number of bytes used by theifreq structures.

For each structure there exists a set of ‘‘interface flags’’ which tell whether the network correspond-
ing to that interface is up or down, point to point or broadcast, etc. The SIOCGIFFLAGSioctl retrieves
these flags for an interface specified by anifreq structure as follows:
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struct ifreq *ifr;

ifr = ifc.ifc_req;

for (n = ifc.ifc_len / sizeof (struct ifreq); --n >= 0; ifr++) {
/*
* We must be careful that we don’t use an interface
* devoted to an address family other than those intended;
* if we were interested in NS interfaces, the
* AF_INET would be AF_NS.
*/
if (ifr->ifr_addr.sa_family != AF_INET)

continue;
if (ioctl(s, SIOCGIFFLAGS, (char *) ifr) < 0) {

...
}
/*
* Skip boring cases.
*/
if ((ifr->ifr_flags & IFF_UP) == 0 ||

(ifr->ifr_flags & IFF_LOOPBACK) ||
(ifr->ifr_flags & (IFF_BROADCAST | IFF_POINTTOPOINT)) == 0)

continue;

Once the flags have been obtained, the broadcast address must be obtained. In the case of broadcast
networks this is done via the SIOCGIFBRDADDRioctl, while for point-to-point networks the address of
the destination host is obtained with SIOCGIFDSTADDR.

struct sockaddr dst;

if (ifr->ifr_flags & IFF_POINTTOPOINT) {
if (ioctl(s, SIOCGIFDSTADDR, (char *) ifr) < 0) {

...
}
bcopy((char *) ifr->ifr_dstaddr, (char *) &dst, sizeof (ifr->ifr_dstaddr));

} else if (ifr->ifr_flags & IFF_BROADCAST) {
if (ioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) {

...
}
bcopy((char *) ifr->ifr_broadaddr, (char *) &dst, sizeof (ifr->ifr_broadaddr));

}

After the appropriateioctl’s have obtained the broadcast or destination address (now indst), the
sendto call may be used:

sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof (dst));
}

In the above loop onesendto occurs for every interface to which the host is connected that supports the
notion of broadcast or point-to-point addressing. If a process only wished to send broadcast messages on a
given network, code similar to that outlined above would be used, but the loop would need to find the cor-
rect destination address.

Received broadcast messages contain the senders address and port, as datagram sockets are bound
before a message is allowed to go out.
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5.9. Socket Options

It is possible to set and get a number of options on sockets via thesetsockopt andgetsockopt system
calls. These options include such things as marking a socket for broadcasting, not to route, to linger on
close, etc. The general forms of the calls are:

setsockopt(s, level, optname, optval, optlen);

and

getsockopt(s, level, optname, optval, optlen);

The parameters to the calls are as follows:s is the socket on which the option is to be applied.Level
specifies the protocol layer on which the option is to be applied; in most cases this is the ‘‘socket level’’,
indicated by the symbolic constant SOL_SOCKET, defined in<sys/socket.h>. The actual option is speci-
fied in optname, and is a symbolic constant also defined in<sys/socket.h>. Optval andOptlen point to the
value of the option (in most cases, whether the option is to be turned on or off), and the length of the value
of the option, respectively. Forgetsockopt, optlen is a value-result parameter, initially set to the size of the
storage area pointed to byoptval, and modified upon return to indicate the actual amount of storage used.

An example should help clarify things. It is sometimes useful to determine the type (e.g., stream,
datagram, etc.) of an existing socket; programs underinetd (described below) may need to perform this
task. This can be accomplished as follows via the SO_TYPE socket option and thegetsockopt call:

#include <sys/types.h>
#include <sys/socket.h>

int type, size;

size = sizeof (int);

if (getsockopt(s, SOL_SOCKET, SO_TYPE, (char *) &type, &size) < 0) {
...

}

After thegetsockopt call, type will be set to the value of the socket type, as defined in<sys/socket.h>. If,
for example, the socket were a datagram socket,type would have the value corresponding to
SOCK_DGRAM.

5.10. NS Packet Sequences

The semantics of NS connections demand that the user both be able to look inside the network header
associated with any incoming packet and be able to specify what should go in certain fields of an outgoing
packet. Using different calls tosetsockopt, it is possible to indicate whether prototype headers will be asso-
ciated by the user with each outgoing packet (SO_HEADERS_ON_OUTPUT), to indicate whether the
headers received by the system should be delivered to the user (SO_HEADERS_ON_INPUT), or to indi-
cate default information that should be associated with all outgoing packets on a given socket
(SO_DEFAULT_HEADERS).

The contents of a SPP header (minus the IDP header) are:
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struct sphdr {
u_char sp_cc; /* connection control */

#define SP_SP 0x80 /* system packet */
#define SP_SA 0x40 /* send acknowledgement */
#define SP_OB 0x20 /* attention (out of band data) */
#define SP_EM 0x10 /* end of message */

u_char sp_dt; /* datastream type */
u_short sp_sid; /* source connection identifier */
u_short sp_did; /* destination connection identifier */
u_short sp_seq; /* sequence number */
u_short sp_ack; /* acknowledge number */
u_short sp_alo; /* allocation number */

};

Here, the items of interest are thedatastream type and theconnection control fields. The semantics of the
datastream type are defined by the application(s) in question; the value of this field is, by default, zero, but
it can be used to indicate things such as Xerox’s Bulk Data Transfer Protocol (in which case it is set to one).
The connection control field is a mask of the flags defined just below it. The user may set or clear the end-
of-message bit to indicate that a given message is the last of a given substream type, or may set/clear the
attention bit as an alternate way to indicate that a packet should be sent out-of-band. As an example, to
associate prototype headers with outgoing SPP packets, consider:

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>
...
struct sockaddr_ns sns, to;
int s, on = 1;
struct databuf {

struct sphdr proto_spp; /* prototype header */
char buf[534]; /* max. possible data by Xerox std. */

} buf;
...
s = socket(AF_NS, SOCK_SEQPACKET, 0);
...
bind(s, (struct sockaddr *) &sns, sizeof (sns));
setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_OUTPUT, &on, sizeof(on));
...
buf.proto_spp.sp_dt = 1; /* bulk data */
buf.proto_spp.sp_cc = SP_EM; /* end-of-message */
strcpy(buf.buf, "hello world\n");
sendto(s, (char *) &buf, sizeof(struct sphdr) + strlen("hello world\n"),

(struct sockaddr *) &to, sizeof(to));
...

Note that one must be careful when writing headers; if the prototype header is not written with the data
with which it is to be associated, the kernel will treat the first few bytes of the data as the header, with
unpredictable results. To turn off the above association, and to indicate that packet headers received by the
system should be passed up to the user, one might use:
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#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>
...
struct sockaddr sns;
int s, on = 1, off = 0;
...
s = socket(AF_NS, SOCK_SEQPACKET, 0);
...
bind(s, (struct sockaddr *) &sns, sizeof (sns));
setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_OUTPUT, &off, sizeof(off));
setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_INPUT, &on, sizeof(on));
...

Output is handled somewhat differently in the IDP world. The header of an IDP-level packet looks
like:

struct idp {
u_short idp_sum; /* Checksum */
u_short idp_len; /* Length, in bytes, including header */
u_char idp_tc; /* Transport Control (i.e., hop count) */
u_char idp_pt; /* Packet Type (i.e., level 2 protocol) */
struct ns_addr idp_dna; /* Destination Network Address */
struct ns_addr idp_sna; /* Source Network Address */

};

The primary field of interest in an IDP header is thepacket type field. The standard values for this field are
(as defined in <netns/ns.h>):

#define NSPROTO_RI 1 /* Routing Information */
#define NSPROTO_ECHO 2 /* Echo Protocol */
#define NSPROTO_ERROR 3 /* Error Protocol */
#define NSPROTO_PE 4 /* Packet Exchange */
#define NSPROTO_SPP 5 /* Sequenced Packet */

For SPP connections, the contents of this field are automatically set to NSPROTO_SPP; for IDP packets,
this value defaults to zero, which means ‘‘unknown’’.

Setting the value of that field with SO_DEFAULT_HEADERS is easy:

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/idp.h>
...
struct sockaddr sns;
struct idp proto_idp; /* prototype header */
int s, on = 1;
...
s = socket(AF_NS, SOCK_DGRAM, 0);
...
bind(s, (struct sockaddr *) &sns, sizeof (sns));
proto_idp.idp_pt = NSPROTO_PE; /* packet exchange */
setsockopt(s, NSPROTO_IDP, SO_DEFAULT_HEADERS, (char *) &proto_idp,

sizeof(proto_idp));
...
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Using SO_HEADERS_ON_OUTPUT is somewhat more difficult. When
SO_HEADERS_ON_OUTPUT is turned on for an IDP socket, the socket becomes (for all intents and pur-
poses) a raw socket. In this case, all the fields of the prototype header (except the length and checksum
fields, which are computed by the kernel) must be filled in correctly in order for the socket to send and
receive data in a sensible manner. To be more specific, the source address must be set to that of the host
sending the data; the destination address must be set to that of the host for whom the data is intended; the
packet type must be set to whatever value is desired; and the hopcount must be set to some reasonable
value (almost always zero). It should also be noted that simply sending data usingwrite will not work
unless aconnect or sendto call is used, in spite of the fact that it is the destination address in the prototype
header that is used, not the one given in either of those calls. For almost all IDP applications , using
SO_DEFAULT_HEADERS is easier and more desirable than writing headers.

5.11. Three-way Handshake

The semantics of SPP connections indicates that a three-way handshake, involving changes in the
datastream type, should — but is not absolutely required to — take place before a SPP connection is
closed. Almost all SPP connections are ‘‘well-behaved’’ in this manner; when communicating with any
process, it is best to assume that the three-way handshake is required unless it is known for certain that it is
not required. In a three-way close, the closing process indicates that it wishes to close the connection by
sending a zero-length packet with end-of-message set and with datastream type 254. The other side of the
connection indicates that it is OK to close by sending a zero-length packet with end-of-message set and
datastream type 255. Finally, the closing process replies with a zero-length packet with substream type
255; at this point, the connection is considered closed. The following code fragments are simplified exam-
ples of how one might handle this three-way handshake at the user level; in the future, support for this type
of close will probably be provided as part of the C library or as part of the kernel. The first code fragment
below illustrates how a process might handle three-way handshake if it sees that the process it is communi-
cating with wants to close the connection:
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#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>
...
#ifndef SPPSST_END
#define SPPSST_END 254
#define SPPSST_ENDREPLY 255
#endif
struct sphdr proto_sp;
int s;
...
read(s, buf, BUFSIZE);
if (((struct sphdr *)buf)->sp_dt == SPPSST_END) {

/*
* SPPSST_END indicates that the other side wants to
* close.
*/
proto_sp.sp_dt = SPPSST_ENDREPLY;
proto_sp.sp_cc = SP_EM;
setsockopt(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp,

sizeof(proto_sp));
write(s, buf, 0);
/*
* Write a zero-length packet with datastream type = SPPSST_ENDREPLY
* to indicate that the close is OK with us. The packet that we
* don’t see (because we don’t look for it) is another packet
* from the other side of the connection, with SPPSST_ENDREPLY
* on it it, too. Once that packet is sent, the connection is
* considered closed; note that we really ought to retransmit
* the close for some time if we do not get a reply.
*/
close(s);

}
...

To indicate to another process that we would like to close the connection, the following code would suffice:
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#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>
...
#ifndef SPPSST_END
#define SPPSST_END 254
#define SPPSST_ENDREPLY 255
#endif
struct sphdr proto_sp;
int s;
...
proto_sp.sp_dt = SPPSST_END;
proto_sp.sp_cc = SP_EM;
setsockopt(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp,

sizeof(proto_sp));
write(s, buf, 0); /* send the end request */
proto_sp.sp_dt = SPPSST_ENDREPLY;
setsockopt(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp,

sizeof(proto_sp));
/*
* We assume (perhaps unwisely)
* that the other side will send the
* ENDREPLY, so we’ll just send our final ENDREPLY
* as if we’d seen theirs already.
*/
write(s, buf, 0);
close(s);
...

5.12. Packet Exchange

The Xerox standard protocols include a protocol that is both reliable and datagram-oriented. This
protocol is known as Packet Exchange (PEX or PE) and, like SPP, is layered on top of IDP. PEX is impor-
tant for a number of things: Courier remote procedure calls may be expedited through the use of PEX, and
many Xerox servers are located by doing a PEX ‘‘BroadcastForServers’’ operation. Although there is no
implementation of PEX in the kernel, it may be simulated at the user level with some clever coding and the
use of one peculiargetsockopt. A PEX packet looks like:

/*
* The packet-exchange header shown here is not defined
* as part of any of the system include files.
*/
struct pex {

struct idp p_idp; /* idp header */
u_short ph_id[2]; /* unique transaction ID for pex */
u_short ph_client; /* client type field for pex */

};

Theph_id field is used to hold a ‘‘unique id’’ that is used in duplicate suppression; theph_client field indi-
cates the PEX client type (similar to the packet type field in the IDP header). PEX reliability stems from
the fact that it is an idempotent (‘‘I send a packet to you, you send a packet to me’’) protocol. Processes on
each side of the connection may use the unique id to determine if they have seen a given packet before (the
unique id field differs on each packet sent) so that duplicates may be detected, and to indicate which mes-
sage a given packet is in response to. If a packet with a given unique id is sent and no response is received
in a given amount of time, the packet is retransmitted until it is decided that no response will ever be
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received. To simulate PEX, one must be able to generate unique ids -- something that is hard to do at the
user level with any real guarantee that the id is really unique. Therefore, a means (viagetsockopt) has been
provided for getting unique ids from the kernel. The following code fragment indicates how to get a unique
id:

long uniqueid;
int s, idsize = sizeof(uniqueid);
...
s = socket(AF_NS, SOCK_DGRAM, 0);
...
/* get id from the kernel -- only on IDP sockets */
getsockopt(s, NSPROTO_PE, SO_SEQNO, (char *)&uniqueid, &idsize);
...

The retransmission and duplicate suppression code required to simulate PEX fully is left as an exercise for
the reader.

5.13. Inetd

One of the daemons provided with 4.3BSD isinetd, the so called ‘‘internet super-server.’’Inetd is
invoked at boot time, and determines from the file/etc/inetd.conf the servers for which it is to listen. Once
this information has been read and a pristine environment created,inetd proceeds to create one socket for
each service it is to listen for, binding the appropriate port number to each socket.

Inetd then performs aselect on all these sockets for read availability, waiting for somebody wishing a
connection to the service corresponding to that socket.Inetd then performs anaccept on the socket in ques-
tion, forks, dups the new socket to file descriptors 0 and 1 (stdin and stdout), closes other open file descrip-
tors, andexecs the appropriate server.

Servers making use ofinetd are considerably simplified, asinetd takes care of the majority of the IPC
work required in establishing a connection. The server invoked byinetd expects the socket connected to its
client on file descriptors 0 and 1, and may immediately perform any operations such asread, write, send, or
recv. Indeed, servers may use buffered I/O as provided by the ‘‘stdio’’ conventions, as long as as they
remember to usefflush when appropriate.

One call which may be of interest to individuals writing servers underinetd is thegetpeername call,
which returns the address of the peer (process) connected on the other end of the socket. For example, to
log the Internet address in ‘‘dot notation’’ (e.g., ‘‘128.32.0.4’’) of a client connected to a server underinetd,
the following code might be used:

struct sockaddr_in name;
int namelen = sizeof (name);
...
if (getpeername(0, (struct sockaddr *)&name, &namelen) < 0) {

syslog(LOG_ERR, "getpeername: %m");
exit(1);

} else
syslog(LOG_INFO, "Connection from %s", inet_ntoa(name.sin_addr));

...

While thegetpeername call is especially useful when writing programs to run withinetd, it can be used
under other circumstances. Be warned, however, thatgetpeername will fail on UNIX domain sockets.


