Cover page

An Exercise in Creating a Lightweight Secure Instant Messaging System 1
C. Edward Chow, Ganesh Godavari and Yu Cai
Department of Computer Science

University of Colorado at Colorado springs

1420 Austin Bluffs Parkway

Colorado springs, CO 80933-7150

USA

Email: {chow, gkgodava, ycai}@cs.uccs.edu

Abstract

In this paper, we present the design and implementation of a lightweight secure instant messenger, called LSIM that is capable of secure group chat, remote file download and remote display control. It is an integrated Jabber instant messaging system and Keystone group re-keying system. Users are authenticated through the use of digital certificates. A group key is issued when members join or leave a group to ensure the security policy. The system was first developed on Linux PC then ported to an iPAQ PDA running Linux as a secure information delivery platform. Performance results of LSIM are presented. The lessons learnt and issues related to secure groupware design are discussed.
Keyword: secure group communication, first responders emergency tool, instant messaging
An Exercise in creating a lightweight Secure Instant Messaging System 1
C. Edward Chow, Ganesh Godavari and Yu Cai
Department of Computer Science

University of Colorado at Colorado springs

1420 Austin Bluffs Parkway

Colorado springs, CO 80933-7150

USA

Email: { chow, gkgodava, ycai}@cs.uccs.edu

Abstract

In this paper, we present the design and implementation of a lightweight secure instant messenger, called LSIM that is capable of secure group chat, remote file download and remote display control. It is an integrated Jabber instant messaging system and Keystone group re-keying system. Users are authenticated through the use of digital certificates. A group key is issued when members join or leave a group to ensure the security policy. The system was first developed on Linux PC then ported to an iPAQ PDA running Linux as a secure information delivery platform. Performance results of LSIM are presented. The lessons learnt and issues related to secure groupware design are discussed.
Keyword: secure group communication, instant messaging for group communications
1. Introduction

The growth of the Internet has led to new and faster forms of communication. The real time communication tool like Instant Messenger has gained immense popularity. With the availability of instant messengers on handheld devices, and cell phones people can chat from virtually anywhere. As virtual offices are becoming common in organizations, Instant messengers are becoming a common viable alternative to e-mail for communication in the workplace.
Conference facilities of the Instant Messengers are widely being used for communication between members of the virtual office. Currently most Instant Messaging systems are designed with scalability rather than security in mind. Every message that goes through Instant Messenger is freely available for anyone to read, as malicious elements can eavesdrop on communication.

Encryption and Authorization services are required to ensure privacy, and unauthorized access of information in group communications. Authorization and encryption service provided by using current security standards like SSL are too slow as data needs to decrypted

1 This research work was supported in part by a NISSC AFOSR Grant, under agreement number F49620-03-1-0207.
at the instant messaging server and needs to be encrypted back for each user involved in the conference.
The general objective of this research is an attempt to create a framework for secure group communication. LSIM uses the instant messaging platform for communication between various clients. In addition to text chatting, LSIM provides file transfer and remote display capabilities.
The rest of this paper is organized as follows. In Section 2, we examine the work done in this area and also look into the tools for instant messaging, group key management and their overall architecture. In section 3 we give an overview of the LSIM system design and implementation. In Section 4 we present the experimental results. Lessons learnt are presented in Section 5 while the conclusion and future work is drawn in Section 6.
2. Related work

Secure group communications has been a hot topic for research in the recent years. There has been some work done by Lawrence Berkeley research Labs (LBL) in building a reliable multicast transport protocol (RMTP) [1] similar to TCP as IP multicast is unreliable in a peer to peer model.
Specifying policy framework for secure group communication has been studied by the Antigone [2] project at University of Michigan.
2.1 Instant Messaging (IM)

IM uses Internet technology to allow people to send text messages that are delivered in real time. One needs to download instant messaging software and install it on his/her computer. After the software is installed and a unique name registered with the IM service provider, the user logs into a central server that indicates whether he/she is available. The messages are sent either through the service’s central server or directly from one computer to another using peer-to-peer technology. There are a number of instant messaging services like AOL [3], Yahoo [4], and MSN [5] which are widely used by people. One of the major problems between these various IMs is interoperability. AOL users can’t talk to MSN, and MSN users can’t talk to Yahoo. If two users want to use IM to communicate with each other, they must have the same service.
Currently two groups within the Internet Engineering Task Force (IETF) are actively working to make interoperability between various instant messengers a reality by defining a common protocol for IM: the Extensible Messaging and Presence Protocol (XMPP) working group and the SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE) Working Group.

2.2 Jabber - Open Source IM service [6]
Jabber is an open XML protocol for the real-time exchange of messages and presence between any two points on the Internet [6]. It is based on the XMPP protocol. The first application of Jabber technology is an asynchronous, extensible instant messaging platform, along with an IM network that offers functionality similar to legacy IM systems such as AIM, ICQ, MSN, and Yahoo. Jabber uses client-server architecture, not a direct peer-to-peer architecture. This means that all Jabber data sent from one client to another must pass through at least one Jabber server. Jabber clients are free to negotiate direct connections, for example to transfer files, but those "out-of-band" connections are first negotiated within the context of the client-server framework. XML is an integral part of the Jabber architecture because it is of utmost importance that the architecture be fundamentally extensible and able to express almost any structured data. When a client connects to a server, it opens a one-way XML stream from the client to the server, and the server responds with a one-way XML stream from the server to the client. Thus each session involves two XML streams.

The Jabber server plays three primary roles:

· Handling client connections and communicating directly with Jabber clients.

· Communicating with other Jabber servers.

· Coordinating the various server components associated with the server.

The only things a Jabber client must do are:

· Communicate with the Jabber server over TCP sockets.

· Parse and interpret well-formed XML "chunks" over an XML stream.

· Understand the core Jabber data types (message, presence among others).

There are a number of Jabber IM clients that run on various operating systems. A list of the Jabber IM client is available at http://www.jabber.org/.
JabberX [7] is a console-mode client for the Jabber instant-messaging IM platform. With JabberX, users can send and receive messages, browse and use Jabber services, participate in Jabber groupchats and search Jabber user directories.
2.3 Security provided by some of the existing IM System

Trusted Secure Group Communications is a need for corporate environments. Yahoo has an Enterprise Edition 1.0 for corporate environment [16]. Messages sent to and from enterprise instant messaging clients are encrypted based on Secure Socket Layer. AOL version 5.2 build #3255 supports end-to-end Public Key Infrastructure (PKI) for encryption [17]. PKI-based encryption works by locating/identifying the public certificate of the recipient and encrypting the outbound message with the recipient’s public certificate. On receiving the message, the recipient's client uses his/her private key to decrypt the message.

Although PKIs offer superior security and encryption they have generally been a failure in the market due to numerous technical issues like the need for fetching the public certificate from a trusted central/decentralized server and coordination among the various trusted servers.

PKI-based encryption reduces the load on the IM server in order to provide end-to-end privacy. SSL encrypted text needs to be decrypted at the IM Server after receiving the message from the sender and before re-encrypting it for delivery to the intended recipient.

2.4 Group Communication and Group Key Management

Group Communication can be explained as ‘communication between two or more people, with a common goal, in which every person can participate with other members’. Group communication is a critical area that currently inspires a lot of research, especially related to the enhancement of security. Network based applications like online stock markets and command-and-control systems use group communication. Internet Research Task Force has formed a Group Security (GSEC) [8] to identify problems related to group communication

A group key management server establishes and maintains group keys for groups of clients. Keystone [9] uses key graph technique to manage keys, thereby providing a scalable group key management scheme. A key graph is a directed a-cyclic graph with two kinds of nodes, u-nodes representing users and k-keys representing keys.

Keystone has the following components

· keyserver0 is a key server program with embedded registrar.

· keyserver is a key server program without embedded registrar.

· registrar is a registrar program.

· specwriter is a specification writer program.

· libks.a is a library for client control functions

For the clients to register with the keyserver, the authentication protocol used is SSL/TLS [10]. The keyserver can provide access control using certificates. Once the client is authenticated, the keyserver generates the client's individual key, which is used to protect further communication between them. As the keyserver can become a bottleneck, keystone provides one or more registrars. Different registrars may use different authentication services to authenticate different set of clients at the same time.

The control manager of a client is responsible for client control functions i.e. sending requests and processing rekey messages. Each client has a data processor, which is not a part of the keystone. The key server processes requests from client, changes keys and distributes new keys to client using the rekey messages using unicast or multicast.

3. LSIM Design and Analysis

There are two design choices for application architectures: client-server and peer-to-peer. The important characteristic of client-server architecture is that a client always initiates by sending a request to server. One of the main disadvantages of client-server architecture is a single point of failure posed by the server. Current instant messaging servers like MSN messenger, YAHOO messenger, AIM, use both client-server and peer-to-peer architecture. Peer-to-Peer communication is used for file transfer or video transfer.

File transfer and video transfer are some of the critical goals of the LSIM application. Providing peer-to-peer communication for file transfer and video increases the load on the client especially in a group communication and also increases complexity for providing access control. We modified the current file transfer mechanism from peer-to-peer to client-server architecture. The design of LSIM is fit in a key management system such as Keystone as transparent as possible as a framework for secure instant messaging.
[image: image1.png]SGFR

Group Key Server

e
SGFR

Instant Messenger
Server

=pp Group key distribution

=p Registration/authentication
Sign-in createl/join chat
groups
Encrypt/Decrypt msgs
using group key

Figure 3.1 The high level interaction of LSIM components

Currently LSIM integrates JabberX (LSIM Client) with Keystone (LSIM Group Key Server) and Jabber Server (LSIM Instant Messenger Server) and provides secure group communication between various JabberX clients using the keystone. It provides facilities like secure group chatting, file transfer and remote display.
[image: image2.png]JabberX
dient
Control
Manager

Jabber Server

Applcaton
Data

Registration

Rekey messages

JabberX
Client

Figure 3.2 Interaction between various LSIM components
Figure 3.2 shows how the JabberX client interacts with the control manager and Jabber server for authentication. The JabberX client sends the data to the conference module of the Jabber Server which broadcasts data to various JabberX clients.
Association of the JabberX client with the keyserver with Jabber server follows the following rules:
1) User logs into the Jabber server

2) If login successful, the client registers with the keyserver.

3) On joining/beginning of a group conference the keyserver gives a key to the client.

4) On leaving the group the keyserver generates a key for the remainder of group that is different from the earlier one.
Figure 3.3 shows the output produced by the keystone when two JabberX clients joined the group. The data enclosed in the red box shows the key generated when each client joined in the group.
The data sent to the group is encrypted using blowfish algorithm [11]. One of the key reasons for using blowfish symmetric cipher is the requirement for low memory usage and faster computation and tough to analyze the data. In future one can use a variety of ciphers for encryption/decryption like AES, 3DES but the cipher suite used by all participants of the group must negotiate for a single cipher for communication. The group policy specification and negotiation are out of scope of this paper. The message is sent out as a XMPP message to jabber server. Upon receiving the message the client tries to decrypt the key using the group key given by the keyserver. If decryption fails, the message is ignored.
Figure 3.4 shows the packet sent between client and server captured using ethereal [12]. Figure 3.5 shows user “ganesh” joined an existing conference started by user “ayen”. So he cannot read what has taken place in the group before he joined the conference.

3.1 File Transfer and Remote Display

In group communications a client must be able to send a file to one or more members in the group. Once the file transfer is complete it should be automatically displayed on all the clients in the group. We choose dillo [13] web browser because it has a low foot print over other browsers. The reason for choosing a web browser as a tool for displaying files is that a web browser has the ability to display/open various applications depending on the type of the file. Since LSIM users like fire fighters typically carry heavy equipment and are overwhelm with critical job at hand, any consideration to assist the task such as opening files send to them automatically is what they indicated and expect it.

According to XMPP protocol, clients are free to negotiate direct connections for transferring files within the context of the client-server framework. In a group communication if all the clients try to establish a peer-to-peer connection with the sender of the file, the sender of the file can become overloaded.
Some of the file distribution techniques that can be used are

1) Using multicast to relay the file to various members of the group.
2) Put the file on a centralized server from where individual users can access the file once notified.

3) Mask the file as a normal group message and let the instant messaging server distribute the message.

The current version of LSIM chose the third technique for sending the file as it reduced the computation on the clients and fit well with a instant messaging client as a unit. The file to be distributed is masked with message type of “filetransfer” from the normal “groupchat” message type used for group conference. The client on receiving the message interprets the message as a ‘file transfer’ rather than ‘group chat’ message.

We have successfully implemented JabberX based LSIM client on Linux Laptops and ported it to iPAQ PDA running Linux.
One of the porting problems faced is formatting of data on screen. JabberX uses ‘iconv’ which is a part of the glibc for formatting of messages into UTF-8. The older version of glibc libraries has a bug in iconv. So the iconv libraries had been updated but the problem persists. We had to display stuff in UTF-8 format instead of any other local format set using the LANG environment variable.

LSIM users cannot be envisioned to have wired access in order to communicate as a group. They need to have a wireless ad-hoc mode of communication as they cannot expect/carry an access point at/to the disaster site. We used mobile ad-hoc mode of 802.11b wireless communication among various LSIM devices.
4. LSIM Testing Results

We tested the time taken for client registration, group join and group leaving in our testbed with iPAQ StrongArm Processor 200MHz 64MB running Linux 2.4.19-rmk6-pxa1-hh13 kernel LSIM client, and IBM Laptop Pentium 800MHz 512MB, running Rehat 9 Linux 2.4.18 LSIM server. Handhelds.org [17] provided valuable information, about the installing linux on handheld devices. We installed the Familiar [18] distribution of linux on our IPAQ. Free share account on a StrongArm cluster for users is provided by handheld.org. We used it in detecting and debugging problems in cryptolib-1.2 and porting JabberX onto iPAQ PDA. Table 4.1 shows that on average the time for client registration is 0.2 sec, joining a group 0.42 sec, and leaving a group is 0.36 sec.
We also tested the time taken for file transfer. Table 4.2 shows that on average time taken for each kilobyte of file transfer are 5043.92 ms. The reason for this poor performance is that the conference module of the jabber server is not designed for handling large chunks of data. We are currently investigating how to improve with the pipelining the transfer and the use of RMTP.
5. Lessons learned

One of the critical goals of this project is to provide a framework for a secure group communication using the existing tools for instant messaging server like Jabber, key server management like Keystone and instant messaging clients like JabberX.

Getting these various tools and their dependencies to work with each other was a great learning experience. Some of the problems faced were

1) Cryptolib -1.2 [14] is a part of keystone key management system. Work on Cryptolib libraries were stopped way back in 1995. Cryptolib libraries has no problem running on Solaris but they have a problem running on Linux as multiple jumps to the same location between function call is overridden on Linux. We are current replacing it with OpenSSL.
2) Removing the conflict between the Keystone client library and p-thread library caused by redefinition of variables constants.

3) Removing the conflict between function declaration of Cryptolib and OpenSSL caused by md2, md4 and md5.
4) Porting the JabberX client onto iPAQ PDA caused a lot of problems related to formatting data onto screen. The problem was solved when we upgraded the iconv libraries and setting the ‘LANG’ environment variable to UTF-8 encoding.
6. Conclusion and Future work
The goal of LSIM was to work on creating a framework for secure group communication for instant messaging using group communication tools like Keystone, Jabber server and Jabber client. We need to extend the work by improving the file transfer capability using Reliable Multicast Transport Protocol.
Providing access control for file access by various group members in the group provides some design choices and challenges. One of the solution is multicasting the file to various group members from a central location where each group member submits his/her access permission information.

We have successfully implemented wireless ad-hoc mode of communication between various LSIM devices, thereby improving the range of communication in LSIM system.

We are also working on improving keystone’s error handling mechanism between keyserver/registrar and client manager. Efforts to improve keystone client manager by moving it into socket layer and providing socket layer API between a client manager and data processor are under way.
7. References
[1]
Reliable and secure group communication http://www-itg.lbl.gov/CIF/GroupComm/
[2] Antigone, policy definition and analyzer for group communication http://antigone.eecs.umich.edu/content/antigone-2.0.12/docs/html/index.html

[3] America on Line. Instant Messenger ™ of AOL http://www.aol.com/

[4]
Yahoo ™ Instant Messenger of Yahoo http://www.yahoo.com/

[5]
MSN ™ Instant Messenger of Microsoft

 http:// msn.com/

[6]
Jabber Software Foundation http://www.jabber.org/

[7]
JabberX, Jabber client http://jabberx.jabberstudio.org/

[8]
IRTF research group, Group security (GSEC) http://www.irtf.org/charters/gsec.html

[9]
Chung Kei Wong and Simon S. Lam “Keystone: A Group Key Management Service,” Proceedings International Conference on Telecommunications, May 2000.
[10]
RFC2246 - "The TLS Protocol Version 1.0" ftp://ftp.isi.edu/in-notes/rfc2246.txt
[11]
Blowfish encryption algorithm http://www.schneier.com/blowfish.html
[12] Ethereal -- A Network Protocol Analyzer http://www.ethereal.com/

[13] dillo web browser http://www.dillo.org/

[14] J.Lancy, D. Mitchell, and M Blaze. Cryptolib-1.2 http://homeport.org/adam/crypto/cryptolib.phtml

[15] Yahoo Messenger applies for corporate jobs – NetworkWorldFusion by scarlet Pruitt 10/07/02 .
[16] AOL Enterprise AIM Services Adopts PKI-Based Security over SSL -- Ferris Research July 2003.
[17] Open source software for handhelds http://www.handhelds.org/

[18] Next generation open source operating system for PDA – http://familiar.handhelds.org/

[image: image3.png],$<messa ge types
groupeh 2t to-
gkgodava @oblib,u
ccs. edu/ Jabberx’
fron—g igconfer
ence.ob1 ib.uccs.
edu/gane sn-'en

e i

ssage>

[image: image4.png]SEmessa ge_type=
Tetra nster |t
o="gkgod aval
b. du/abbe
jiccon
obTib, uc
5. eu/f anesh’ ¢
n ody>zusn
MS5QCFC6 MIUZNDUG
+1fDTWS0 GsQanT2x

AFLQAUU UUABGVAN
Hbwdvg== </body><
/message>

 Figure 3.4 Encrypted message sent by
 client to server captured using Ethereal.
 Figure 3.3 Keystone Console Output
[image: image5.png][root@oblib keystonel.Q]# ./keyserver0O
pid 23976 in progress

pid 23076 exited
Broup g1 key (100000.2); [SUEFLZ7A BCasides SUSONGSF OCT37007 Suefizrd ecasides
req rekey: [N(100002,15] TNCT L2751 (108)

join rekay

0105006C 00000000 00000002 00000001

1351d20C 44625901 42e5F4bs boB52684

05852548 061fdfea 1885d461 alefdzel

c7dai3ba 6eas7oec 5857d567 77906ade

f635206C a3haB20a dbdall27 00047194

388eb20e C6857h75 8aOfasTs 12168074

5240821e b3cF2gab 3e162471]

ElETER

rekey msg 0 (gl):

pid 24020 in_progress

pid 24020 exited

req rekey: [N(100003,1)] [N(L00000,3)] (108

join rekay

0105006C 00000000 00000003 00000001

b31675e0 0244c27F e7bfc2ds caofsccd

46easass 58316006 483adze3 c8dolla

17ba81c6 b2<72901 005ho7ee 45986258

Ca7131ef cBicS7ac 02b575a6 04294a8F

b600CCS5 Sca76321 728022af 4207ad90

c6Rdeloa 78061206 e3643aC2

EJENERY

rekey msg 0 (gl): [3(100000,3)(100000,2)]

rekey msg 137

01040084 00000000 00000001 00000001

0202002¢ 00018620 00000002 00018620

00000003 1fbacecé 2146f863 6dlc2425

0569004 755C0800 373228 07000048

00000000 0675030 211653 bdaesco?

cf337bel Sbocdlds doThderd 678Fh7Td

82631504 320he20a bbb3ze2d 4e73coTe

520ead76 20024322 4earssde F773607h

300a7046

oroup ol key (100000,4): |4dcd385a T96e0452 acBchozc er0scdae 4dcd38sa T9620457]

[image: image6.png]Jx> join gl@conference.oblib.uccs.edu

Joining gl@conference.oblib.uccs.edu
+ ayen is available
ayen has become available

<ayen> hello
<ganesh> ganesh is here
<ayen> good thatu r

Gehar [gl@conference.oblib.uccs.edu]
Online [ayen@oblib.uccs.edu/JabberX]
Jx> leave gl@conference.oblib.uccs.edu _

Figure 5.6 Message between 2 clients during file transfer captured using Ethereal.
 Figure 3.5 text chat between two clients
Table 4.1 Time taken for client registration group join, group leave
	Runs
	Client Registration
Time (ms)
	Group Join
Time (ms)
	Group Leave
Time (ms)

	1
	279.62
	233.46
	135.54

	2
	249.28
	652.74
	126.78

	3
	253.93
	706.04
	769.08

	4
	259.46
	118.15
	434.12

	Avg/Run
	260.5725
	427.5975
	366.38

Table 4.2 Time for file transfer.
	File size
	Time Taken (ms)

	8.5K
	35302.47

	25K
	105986.05

	60K
	305934.53

	195K
	1007949.38

�

Encrypted message “hello” in the red box

�

�

� �

User “ayen” chat window User “ganesh” chat window

1

[image: image7.png]Jx> join gl@conference.oblib.uccs.edu

Joining gl@conference.oblib.uccs.edu

+ ayen is available

ganesh is available

decryption of the string gone wrong error -2
+ ganesh has become available

<ganesh> ganesh is here
<ayen> good thatu r
*** ayen has left

Gehar [gl@conference.oblib.uccs.edu]
Online [ganesh@oblib.uccs.edu/JabberX]
Ix>

