
Enhance TCP performance with
multiple path routing; Use

Eclipse to debug Linux Kernel
Networking Code

October 5, 2004

Frank Watson

User Mode Linux Overview
User Mode Linux (acro: uml) is composed of two

different parts:

1) Linux executable
• Created by taking the kernel source tree and applying a

patch from UML's website.
• The Linux kernel as an application. Advantages:

modifications do not crash host machine and able to
attach a debugger. Disadvantage: currently unable to
test device drivers

2) Root file system
• A byte per byte copy of an operating system's file system

includes: libraries, compilers, shells, and anything that
makes an operating system work. Conceptual example:
CD Iso images.

How User Mode Linux works
● Commands
● linux umid=lamb udb0=root_fs ubd=mmap eth0=tuntap,,,172.31.0.130

eth1=tuntap,,,172.31.0.131 mem=32M udb2=swap

linux Executable
udb0=root_fs Name of root file system
umid=lamb UML ID – for interface with UML console
ubd=mmap Not necessary -- use /dev/anon for mem
eth0=tuntap,,,172.31.0.130 Use tuntap driver with ip address 0.130
eth1=tuntap,,,172.31.0.131 2nd device driver
mem=32M Amount of memory to use
udb2=swap Swap file

● Networking – tuntap
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
172.31.0.172 * 255.255.255.255 UH 0 0 0 tap0
10.0.1.172 * 255.255.255.255 UH 0 0 0 tap1
172.31.0.0 * 255.255.255.0 U 0 0 0 eth0
169.254.0.0 * 255.255.0.0 U 0 0 0 eth0
127.0.0.0 * 255.0.0.0 U 0 0 0 lo
default 172.31.0.1 0.0.0.0 UG 0 0 0 eth0

Debugging
● Allows for Back Trace

– When kernel panics calls kernel/panic.c:panic. This
helps in determining what caused the kernel crash.

● Examination of variables
– sk_buff and the sock (INET socket) are the most

important variable while tracing networking code.

● Stepping through code to find the code path
– What is populated in the sk_buff is not as important as

when. Being able to step through the code allows the
developer to see when a method is populated.

Additional features of UML

● Two minute build time (pending on machine)
– Not all the device drivers are built. Saves a lot of

time.

● Instance results
– Do not have to mess with the system map, move

the bzImage (kernel file), and play with modules.

How to install UML
•Download 3 main files
Kernel source code, UML kernel patch, and Root file system
•Installation

Unpack the kernel – "tar xvjf <kernelSourceCode>.tar.bz2”

Apply the UML patch -- "patch -p1 < patchFile" at top of the source tree

Build the "linux“ executable from the linux source – "make xconfig ARCH=um;
make dep; make linux ARCH=um”

•Running UML – executable is located at the top of the source tree
execute uml with the following command line:

linux mem=128M udb=root_fs_slackware_7.0_big udb2=swap debug=go
eth0=tuntap,,,<IP address # 1>

•Setting up the internet connection once UML opens
Use the following commands:

Ifconfig eth0 <IP address #2>
Route del –net 172.31.0.0 dev eth0 netmask 255.255.0.0
Route add –host <IP of host machine> dev eth0
Route add default gw <IP of host machine>

Eclipse

● Description
– Started by IBM. Open Source project and has

over thirty companies (to name a few: Borland,
Rational – before being merging with IBM, Red
Hat, SuSE, Intel,Compuware, Novell, Oracle,
PalmSource, Fujitsu, Genuitec, Hitachi Software)

● Plug-ins
– Eclipse works on a plug-in scheme and allows

additional functionality. For example, if you like
the features in Borland's Jbuilder. Download (for
a price) the plug-in and get these features
incorporated into Eclipse.

Eclipse CDT Plugin

● Allows for C/C++ development
● Perspective windows

– Partitions out the functionality – keeps everything
from being cluttered

● Scanning
– Four different scanners which look at the source

code, make files, and binary code.

● Interfaces with GDB
– Allows the use of a .gdbinit file to initialize GDB

Debug session and trace

Break points and watches

Perceptions: Debug development

Console

Source code

Where to start
(Linux source tree)

– Explanation of /usr/src/linux)

/usr/src/linux

arch/

i386/

boot/
Where bzImage is kept

Include/

net/

net/

ipv4/
Network header

files are kept
Many source code modifications

Sk Buff / Socks

• Structure that is interwoven through the entire network delivery of an
internet packet.

• This data structure is fine tuned and works really well.

• Located in the /usr/src/linux/include/linux directory. Declared in a
header file called skbuff.h

• Sockets are the data structures used to route the header-less packets
when they are first created.

• There are two different types of Sockets in Linux: BSD and INET

• BSD is the socket interface which interacts with the user; within the BSD
socket an INET socket (can also be multiple INET sockets link listed) .
INET sockets do the rest of the work and are sent with the packet's
receiving or destination info.

Data

*th

*eth

*iphh
*arp

*raw

Sending a packet

Scheduler runs
device driver

Application
continues

Application writes
to socket

INET checks
socket

Data
TCP Header
IP Header
Ethernet Header

Link

Internet

Transport

Application
Socket writes

to protocol

TCP creates
packet buffer

TCP fills
in header

Device prepares,
 sends packet

Packet goes out
on medium

TCP copies
payload

TCP copies
payload

TCP copies
payload

Back trace (sending a packet)
dev_queue_xmit

...

ip_finish_output2

...

ip_output

ip_queue_xmit2

ip_queue_xmit

tcp_trasmit_skb

tcp_connect

tcp_v4_connect

inet_stream_connect

sys_connect

sys_socket_call

...

➔ skb freed

➔ skb->hh (hardware header) determines if packet is ipip

➔ Increment's SNMP stats

➔ Adds IP checksum; sets the sk peer and IP ID field.

➔ Rt is copied to skb's dst_entry; IP header is built

➔ Tcp header is built; tcp_option is built/updated; adds TCP
checksum;l sets INET sock to skb->sk

➔ Sets the window and populates the tcp_option (init values)

➔ INET socket's destination IP/port are set. Dst entry is created
and set in INET socket.

➔ Marks the inet sock state. At this point, INET socket is sent apart
from the BSD socket

➔ System call. Looks up BSD Socket.

➔ Copies info from user level

Receiving a packet

Packet arrives
on medium

Packet goes on
backlog queue

Device checks,
stores packet

Scheduler runs
“soft interrupt”

net_bh pops
packet queue

net_bh matches
protocol (IP)

IP checks
For errors

TCP checks
For error

Packet goes in
Socket queue

Route to
Different host

Out to send
queue

Application reads
from socket

Socket reads
from queue

Socket asks
for payload

Application gets
data, continues

TCP copies
payload

Data
TCP Header
IP Header
Ethernet Header

Waits for data

Wait for
scheduler

Link

Internet

Transport

Application

IP forwarding

Enhanced TCP

● IP tunneling creates two IP headers on one
packet. When the gateway or proxy server
receives the packet, it strips off the first IP
header and sends it to the back-end
destination.

● To create a multi-pass routing using TCP,
we use IP tunneling to trick the end server
into thinking the packet comes through the
same route.

Proxy M

Client A

Server X

A To B

A To X

A To X

Enhanced TCP (cont.)

Proxy M

Client A Server X

A To M

A To X
A To X

Proxy N

Direct
Connect O

A To N

A To X

A To O

A To X

A To X

A To X

Solution
● Setup the client to have two IP tunnels (tunl0

and tunl1). Write the code in the
ip_queue_xmit and switch the dev on the
sk_buff.

● ip_queue and ip_queue2 are the last places
in the ip/tcp code before sending up to lower
device levels. Changing the device to a
tunnel oppose an ethernet will also change
the functions called, meaning the sk_buff will
travel through functions in the ipip.c adding
the additional IP header.

● Yu Cai made this break through.

Demo

Picture of the packet through the source code.

● We will insert break points at:

1) tcp_v4_connect – IP and port are populated
dst_entry is created

2) tcp_connect – sets initial window and tcp_option

3) tcp_transmit_skb – tcp header built

4) ip_queue_xmit – IP header is built

5) ip_queue_xmit2 – sets sk peer and IP's ID and
checksum field

References

• http://www.linux-mag.com/2001-04/user_mode_01.html An extremely
helpful article about setting up UML with a step by step example

• http://user-mode-linux.sourceforge.org The user mode linux webpage
• http://kernelnewbies.org/documents/ipnetworking/linuxipnetworking.html

An extremely valuable document about the linux IP networking layer
• Linux IP Neworking – A guid to implementation and modification of the

Linux Protocol Stack – Glenn Herrin
• Interworking with TCP/IP – Douglas Comer

